

دفتر :

تفاضل و تكامل 3

calculus 3

هناك البدارنة

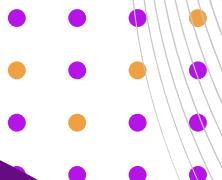
إعداد

اللجنة الأكاديمية لقسم الهندسة الصناعية

2025

TurboTEG.Com

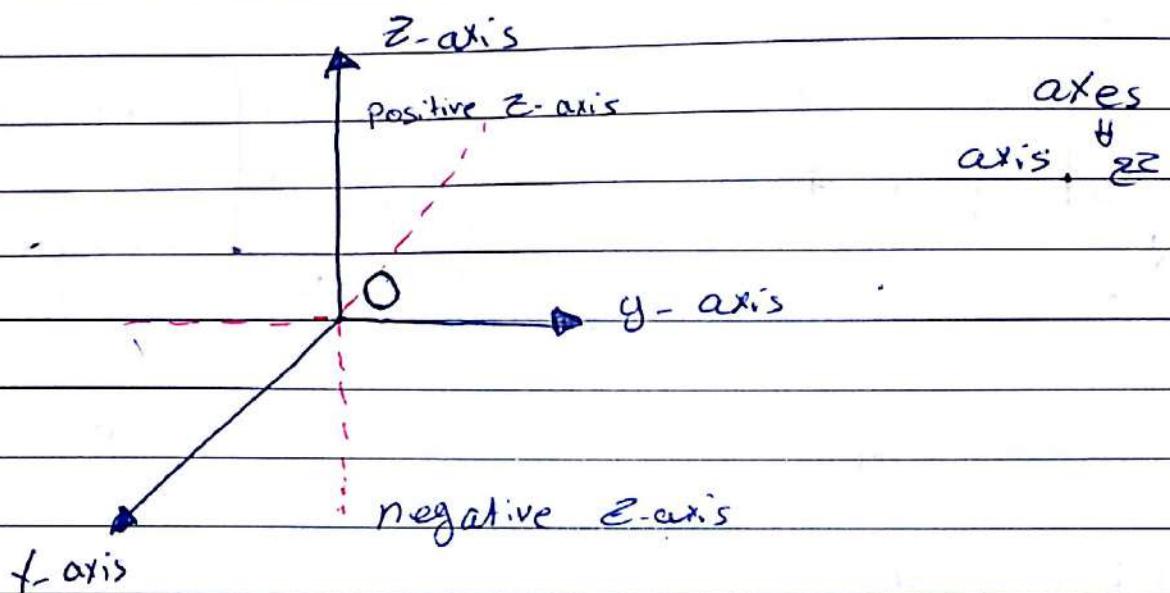
Turbo Team Youtube



Ch. 12 \Rightarrow Vectors and Geometry of space

Sec. 12.1 The Three dimensional Coordinate Systems

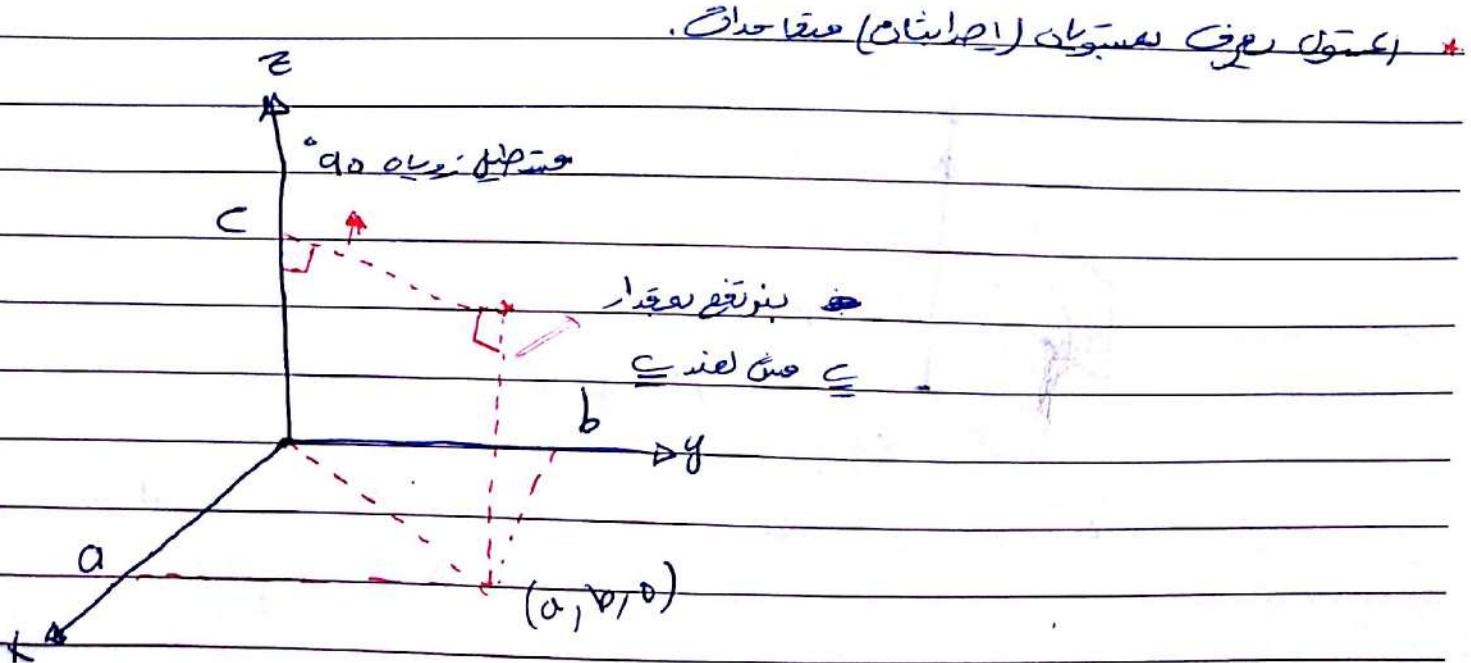
Suppose we have 3 perpendicular lines in the space that are intersected at the same point (pt.)



* These axes called the coordinate axes

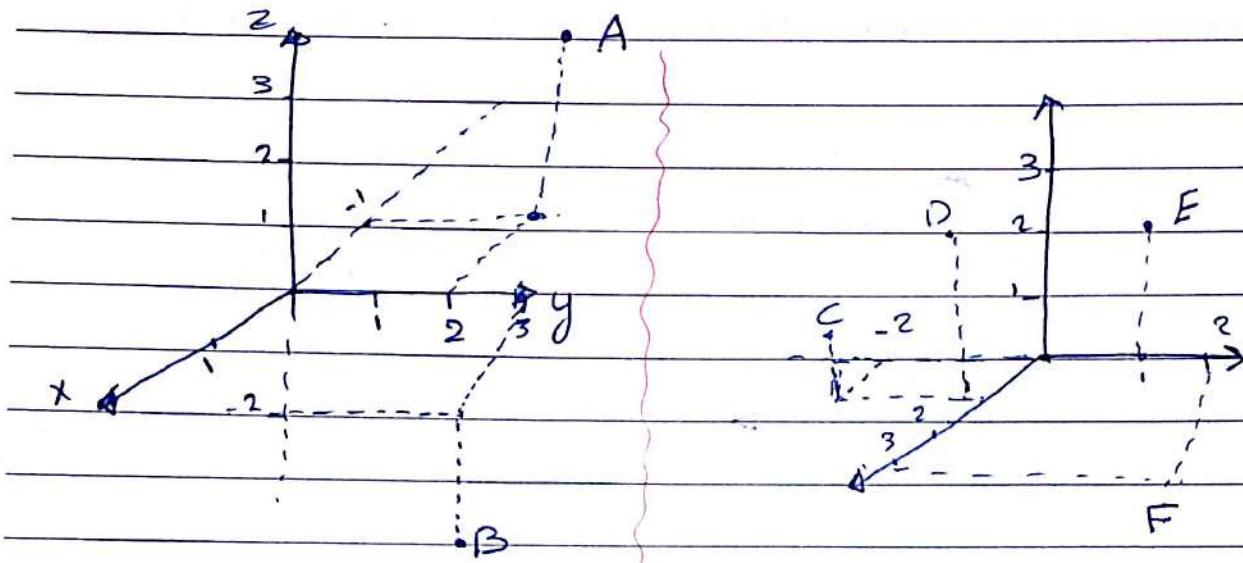
* The pt. of intersection is called the origin

* A representation of apt. $A(a, b, c)$ in the space as:



Ex 2 plot the graph of the

pts. $A(-1, 2, 3)$ $B(1, 3, -2)$ $C(1, -2, 1)$
 $D(1, 0, 3)$ $E(0, 1, 2)$ $F(3, 2, 0)$
 $G(1, 0, 0)$ $H(0, 0, -2)$



* (a, b, c) is apt. in the space.

* a: x-coordinate

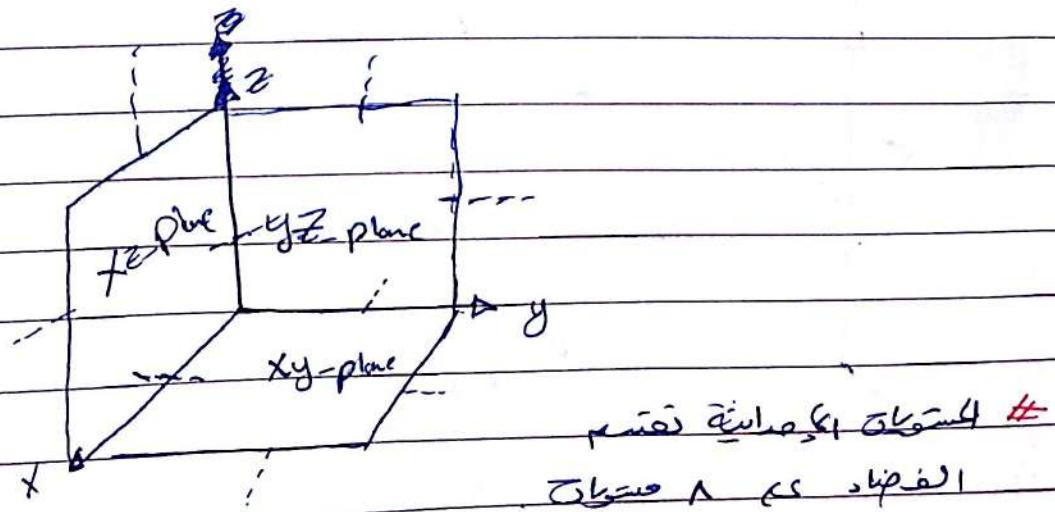
* b: y-coordinate

* c: z-coordinate

المحاور الأصلية في الفضاء #

* The coordinate planes are:-

xy -plane, xz -plane, yz -plane



These coordinate planes divide the space into 8 parts each part is called an octant

The first octant is (1st) the octant that includes the positive coordinate axes

Remark: The graph of the equation (eq.):

if $f(x,y) = 0$ in the plane is a curve

2) $f(x, y, z) = 0$ in the space is a surface

Ex 1) $y = x^2$ is a curve in the ~~spatial~~ plane

2) $y = x^2$ is a surface in the space

الخط المستقيم (line) \rightarrow خط متعامد (parallel line) \rightarrow خط متقاطع (intersecting line)

Ex 8 Sketch the graph of the following Q.S. in the space

$$\textcircled{1} \quad y = x^2 \quad \textcircled{2} \quad z = -y \quad \textcircled{3} \quad x = 2 \quad \textcircled{4} \quad x = 0$$

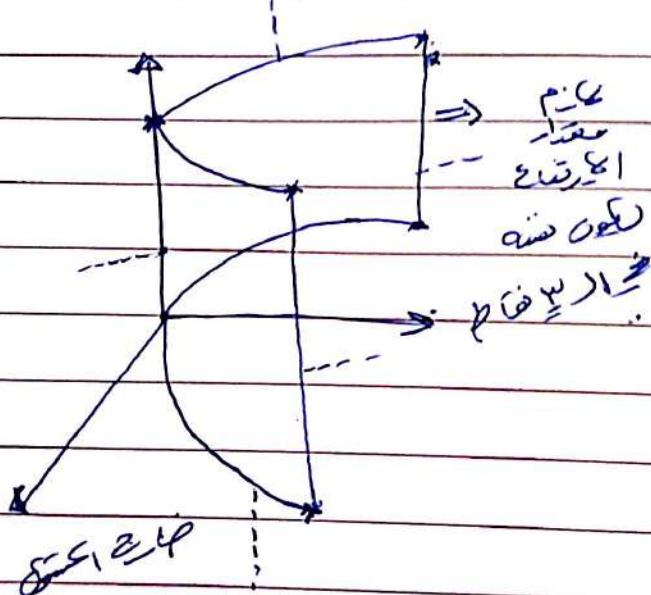
$$\textcircled{5} \quad y = 0 \quad \textcircled{6} \quad z = 0$$

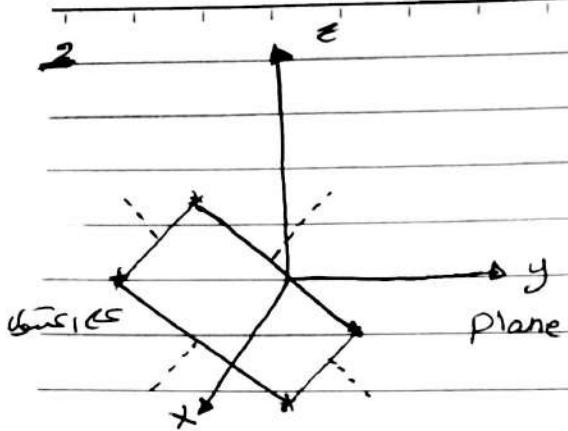
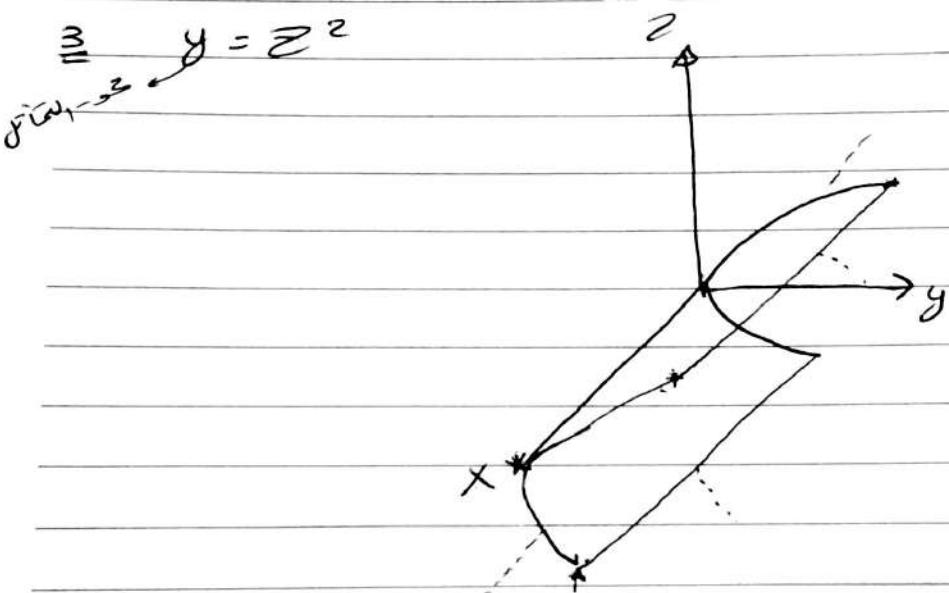
50182

١- المُكَوَّن المُكَتَطُ ، كَمْبِيُّونِيَّةُ الطَّاَمِرَةِ وَبِنَسْمِ رَيْجِيُّونِيَّةِ كَلَاهِ

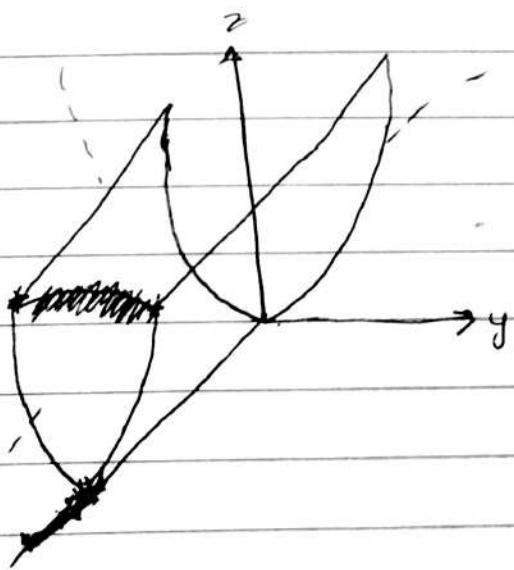
٢- بِنَائِيَّةُ ٣ نَعَّمِ سِجَّلِ بَعَانِيَّةِ لَكَعَنِيَّةِ اِكْعَنَيِّ

٣- بِنَوَاهِيَّةِ الْمَنَاطِرِ بِبَفْنِيَّةِ رَيْجِيُّونِيَّةِ .



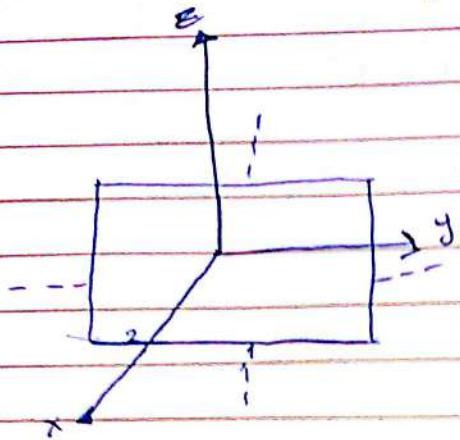
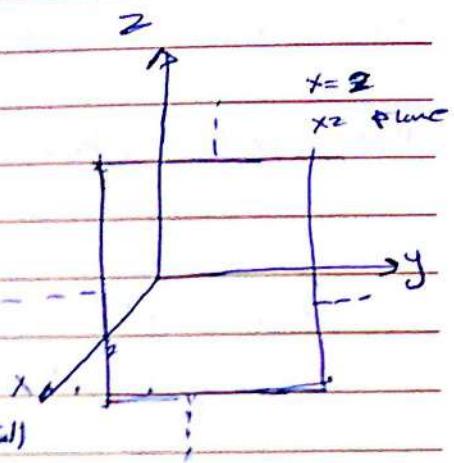


4 $z = y^2$

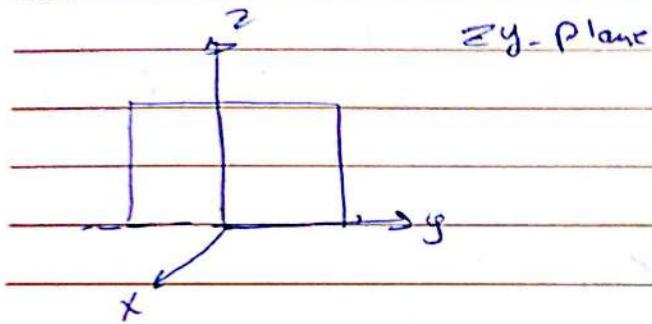


$$5 \quad x=2 \Rightarrow x+0z=2 \quad \text{so} \quad x+0y=2$$

$x=2 \Rightarrow$ const. in y, z in the plane xy .

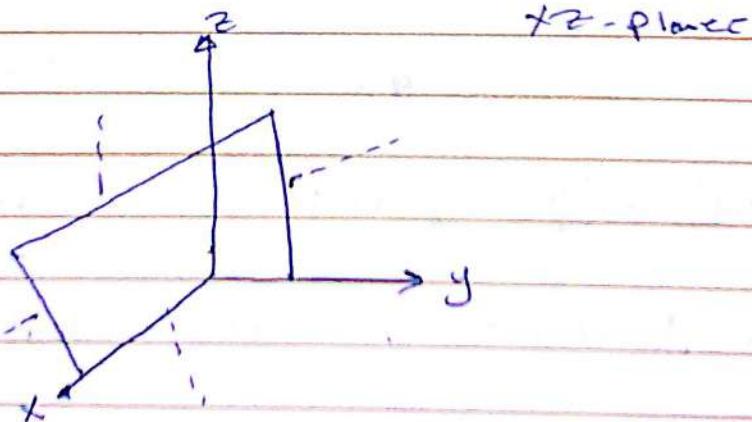


$$6 \quad x=0$$

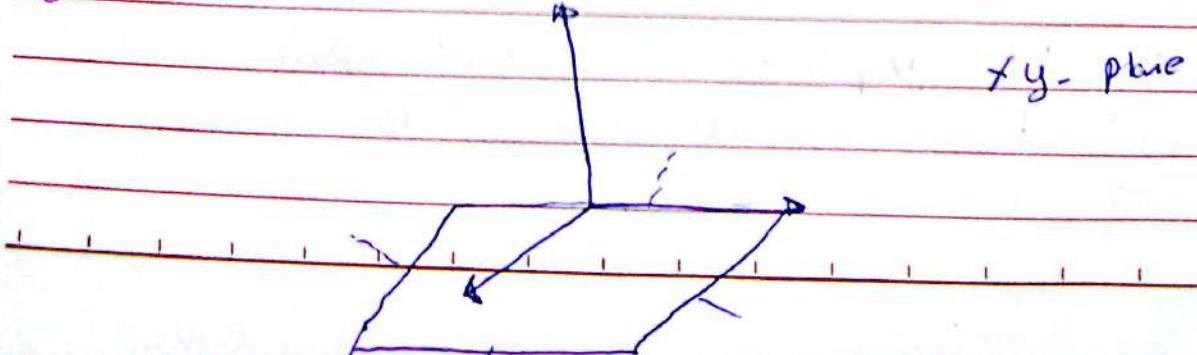


طريق اخر

$$7 \quad y=0$$



$$8 \quad z=0$$

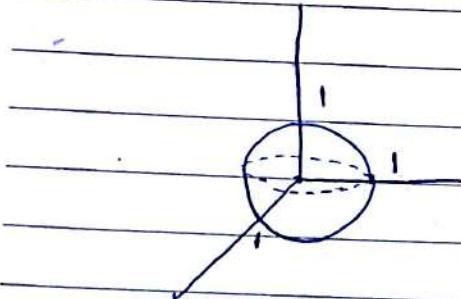


Definition (Def.)

The eq. of the sphere of radius r and center (a, b, c) is

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

The unit sphere is $x^2 + y^2 + z^2 = 1$



Ex ① The eq. $x^2 + (y+3)^2 + (z-4)^2 = 9$

is an eq. of a sphere of radius 3, center $(0, -3, 4)$

② Show that the eq.

$$2x^2 + 2y^2 + 2z^2 + 8x - 12y + 4z + 12 = 0$$

is a sphere and find its center, radius.

$$\text{Solve eq. } \div 2 \Rightarrow x^2 + 4x + y^2 - 6y + z^2 + 2 = -6$$

$$(x^2 + 4x + 4) + (y^2 - 6y + 9) + z^2 = -6 + 4 + 9$$

$$(x+2)^2 + (y-3)^2 + z^2 = 7 \Rightarrow \text{is a sphere}$$

Center $(-2, 3, 0)$ radius $\sqrt{7}$

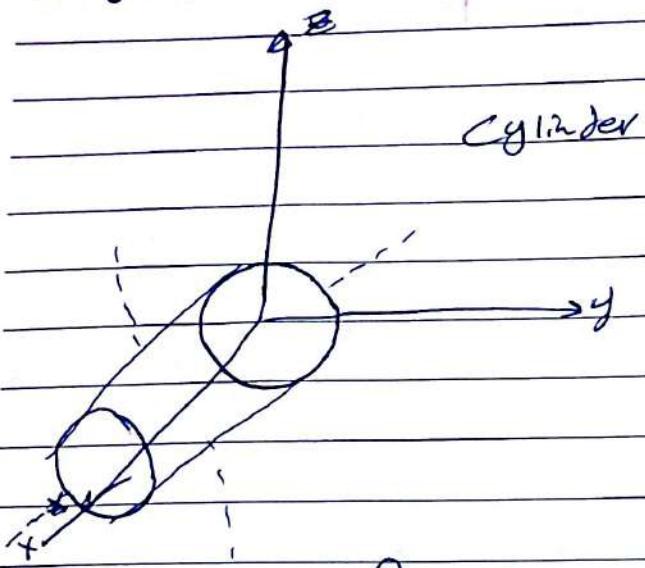
③ Sketch the graph of in the space

$$① x^2 + y^2 = 4$$

$$③ x^2 + z^2 = 16$$

$$② y^2 + z^2 = 9$$

$$y^2 + z^2 = 9$$



Cylinder

notation $\Rightarrow \mathbb{R} = (-\infty, \infty)$

② $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{ (x, y) : x, y \in \mathbb{R} \} = xy\text{-Plane}$

③ $\mathbb{R}^3 = \{ (x, y, z) : x, y, z \in \mathbb{R} \}$

= XYZ-~~Plane~~Space = Space

Examples \Rightarrow sketch the region in \mathbb{R}^3 that represent the inequalities \Rightarrow

① $y^2 \leq z \leq y^2 + 1$

② $1 \leq x^2 + y^2 + z^2 \leq 4$

③ $x^2 + y^2 + z^2 \geq 6z$

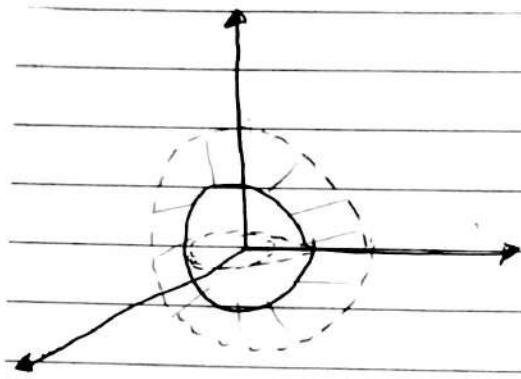
④ $x \geq 3$

⑤ $z \leq 0$

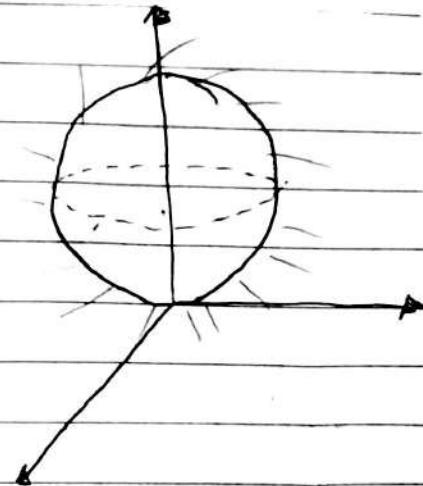
Soln.

$$\boxed{2} \quad x^2 + y^2 + z^2 = 1$$

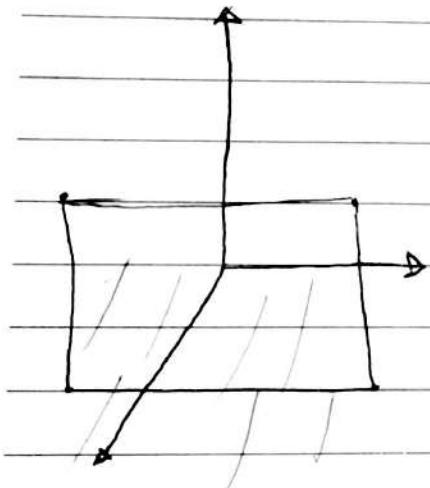
$$x^2 + y^2 + z^2 = 4$$



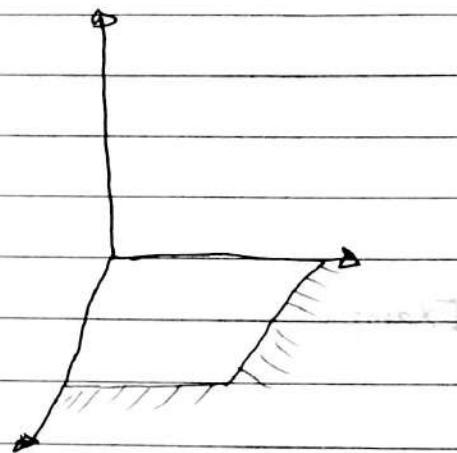
$$\boxed{3} \quad x^2 + y^2 + (z-3)^2 = 9$$



$$\boxed{4} \quad x = 3$$



$$\boxed{5} \quad z = 0$$



Defn. The distance between two points $A(x_1, y_1, z_1)$
 $B(x_2, y_2, z_2)$ is :-

$$\text{dist}(A, B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Defn. the mid point of the line segment joining two pts
 $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ is :-

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2} \right)$$

Example: Find the eq. of the sphere if one of the diameter has end pt. $P(2, 1, 4)$, $Q(4, 3, 7)$

Sol. The Center = mid pt. = $(3, 2, \frac{11}{2})$

$$r = \frac{1}{2} \text{ dist } (P, Q) = \frac{\sqrt{17}}{2}$$

$$\text{The eq. is } (x-3)^2 + (y-2)^2 + (z - \frac{11}{2})^2 = \frac{17}{4}$$

Remark: The distance from pt. $A(a, b, c)$ and these

- 1) Xy -plane is $|c|$
- 2) Zy -plane is $|a|$
- 3) XZ -plane is $|b|$

Example: Find the eq. of the sphere centered at $A(2, -1, -3)$ and touched the XZ -plane

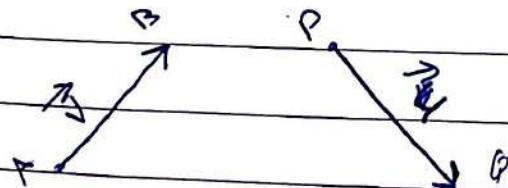
$$\text{Soln. } r = |-1| = 1$$

$$\Rightarrow (x-2)^2 + (y+1)^2 + (z+3)^2 = 1$$

Sec 12.2 ... Vectors

Def: A vector \vec{V} is a quantity that has:

- 1) Magnitude (or length) $|\vec{V}|$
- 2) Direction



• We can represent Vectors using their initial and terminal pts

$$\vec{V} = \vec{AB}$$

$$\vec{U} = \vec{PA}$$

• If $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ then :-

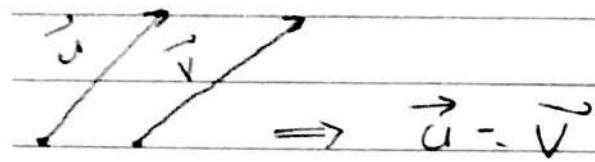
$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• Def. - The Zero Vector $\vec{0}$ is a vector with the same initial and terminal pts.

$$\vec{0} = \vec{AA} = \vec{BB}$$

• Vector of length 0 and in any direction

• Def. - The two vectors \vec{U}, \vec{V} are equal $\vec{U} = \vec{V} \iff$ They have the same length and direction

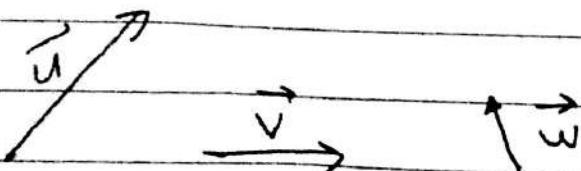


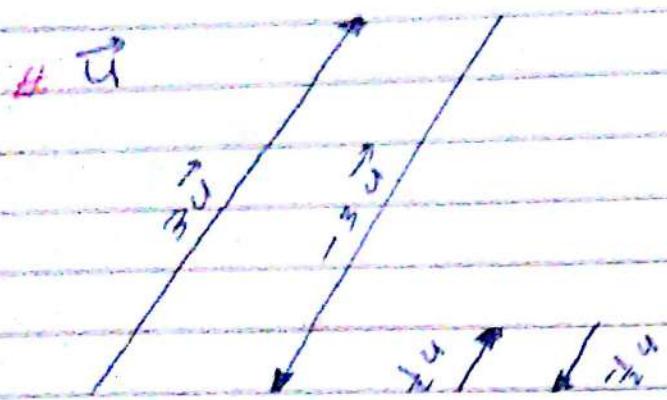
• Def. - let \vec{U} be a vector, a is a number, $a\vec{U}$ is a vector with length

$$|a\vec{U}| = |a| \cdot |\vec{U}|$$
 and it's :-

- ① in the same direction of \vec{U} if $a > 0$
- ② in the opposite direction of \vec{U} if $a < 0$

Example

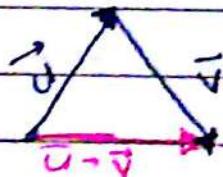




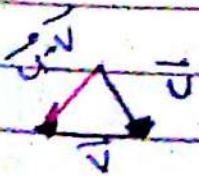
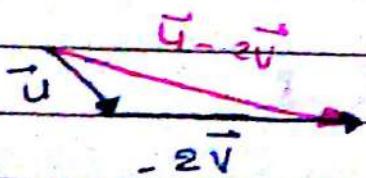
Problem 1

① $\vec{U}, -\vec{V}$ are of the same length but with opposite dir.
 ② $0\vec{U} = \vec{0}$

Sol Let \vec{U}, \vec{V} be two vectors as in the figure, then $\vec{U} + \vec{V}$ is the vector with initial pt. as that of \vec{U} , and terminal pt. as that of \vec{V} .

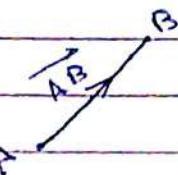


Ex Sketch: $\vec{U} + \vec{V}$ } $\vec{U} + -2\vec{V}$



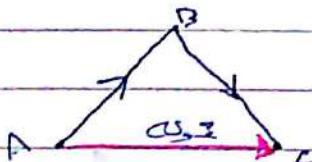
Remark 1

$$\overrightarrow{AB} = \overrightarrow{BA}$$



Remark 2

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$



Example 1

Let A, B, C be 3pt's.

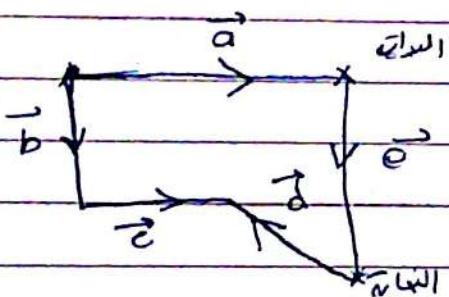
What is the vector:

$$\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} \text{ ?!}$$

Sol. $\overbrace{\overrightarrow{AB} + \overrightarrow{BC}}^{\overrightarrow{AC}} - \overrightarrow{AC} = \overrightarrow{AC} + -\overrightarrow{AC} = \overrightarrow{AC} - \overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0}$

Example 2

Write the vector \vec{e} as a sum of the vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$



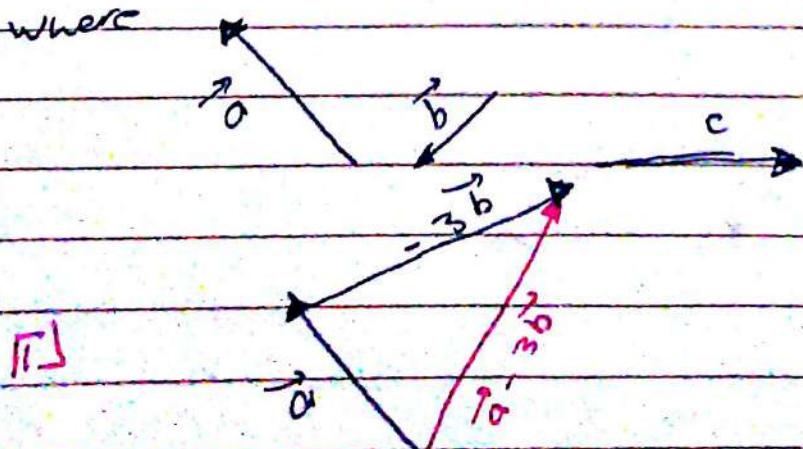
$$\vec{e} = -\vec{a} + \vec{b} + \vec{c} + -\vec{d}$$

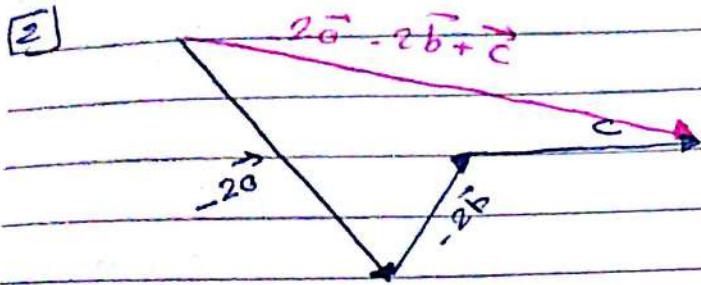
Example 3

Draw the vectors $\vec{a} - 3\vec{b}$

$$[2] 2\vec{a} - \vec{b} + \vec{c}$$

where





The component form of a vector \vec{v} in \mathbb{R}^3 is $\vec{v} = \langle a, b, c \rangle$
 if its initial pt. is $O(0,0,0)$ and terminal pt. $P(a,b,c)$
 $|\vec{v}| = \sqrt{a^2 + b^2 + c^2}$

let $\vec{v} = \vec{AB}$ where $A(x_1, y_1, z_1)$ $B(x_2, y_2, z_2)$

$$\vec{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

$\boxed{B-A}$ with sign

Example: let $\vec{v} = \langle 2, -1, 0 \rangle$

1] $\vec{v} = \vec{OP}$, $O(0,0,0)$, $P = (2, -1, 0)$

2] $\vec{v} = \vec{AB}$, $A(2, 1, 6)$, $B = (4, 3, 5)$

3] $\vec{v} = \vec{CD}$, $C(-3, 0, -1)$, $D = (-1, -1, -1)$

Properties: let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3

1] $\vec{v} = \vec{0} \iff \vec{v} = \langle 0, 0, 0 \rangle$

2] let $\vec{u} = \langle u_1, u_2, u_3 \rangle$, $\vec{v} = \langle v_1, v_2, v_3 \rangle$, k number
 then $k\vec{u} = \langle ku_1, ku_2, ku_3 \rangle$

$$\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

3) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$

Example 8 let $\vec{u} = \langle -1, 2, 3 \rangle$, $\vec{v} = \langle 2, 1, 5 \rangle$
Find $|3\vec{u} - 2\vec{v}|$

Sol. $3\vec{u} - 2\vec{v} = \langle 3(-1) - 2(2), 3(2) - 2(1), 3(3) - 2(5) \rangle$
 $= \langle -7, 4, -1 \rangle$

$$|3\vec{u} - 2\vec{v}| = \sqrt{49 + 16 + 1} = \sqrt{66}$$

Def \Rightarrow A unit vector denoted by $\hat{a}, \hat{b}, \hat{c}, \dots, \hat{u}, \hat{v}$
is a vector of length 1 $|\hat{a}| = 1$

Example \rightarrow determine If the vectors below are unit vector
or not 2!

1) $\vec{u} = \langle \frac{1}{2}, \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle$

$$|\vec{u}| = \sqrt{\frac{1}{4} + \frac{1}{4} + \frac{3}{4}} = \sqrt{\frac{5}{4}} \neq 1 \text{ not unit vector}$$

2) $\vec{w} = \langle \frac{-3}{4}, \frac{1}{2}, \frac{\sqrt{3}}{4} \rangle$

$$|\vec{w}| = \sqrt{\frac{9}{16} + \frac{1}{4} + \frac{3}{16}} = \sqrt{1} = 1$$

$\therefore \vec{w}$ is unit vector

Exercise +

Find α s.t

$$\vec{B} = \left\langle \frac{1}{5}, \alpha, -\frac{1}{5} \right\rangle \text{ unit vector}$$

Def. If $\vec{\alpha} \neq 0$ then

$$\frac{\vec{\alpha}}{|\vec{\alpha}|}, \frac{|\vec{\alpha}|}{\vec{\alpha}} \text{ unit vectors}$$

$\therefore \vec{\alpha}$ unit vector in the same direction of $\vec{\alpha}$

$$|\vec{\alpha}| =$$

$\therefore -\frac{\vec{\alpha}}{|\vec{\alpha}|}$ unit vector in the opposite direction of $\vec{\alpha}$

$k\vec{\alpha}$ vector of length $|k|$: in the same direction of $\vec{\alpha}$
 $|\vec{\alpha}|$ if $k > 0$

in the opposite direction of $\vec{\alpha}$
if $k < 0$

Example : Let $\vec{\alpha} = \langle 2, -1, 3 \rangle$

(i) Unit vector in :-

* the same direction of $\vec{\alpha}$ is $\frac{\vec{\alpha}}{|\vec{\alpha}|} = \left\langle \frac{2}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right\rangle$

* opposite = $= -\frac{\vec{\alpha}}{|\vec{\alpha}|} = \left\langle \frac{-2}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}} \right\rangle$

(2) A vector of length 0.1 in

* The same direction of \vec{a} is $0.1 \frac{\vec{a}}{|\vec{a}|} = \frac{0.2}{\sqrt{14}}, \frac{-0.1}{\sqrt{14}}, \frac{0.3}{\sqrt{14}}$

* ∞ opposite \vec{a} is $-0.1 \frac{\vec{a}}{|\vec{a}|} = \frac{-0.2}{\sqrt{14}}, \frac{0.1}{\sqrt{14}}, \frac{-0.3}{\sqrt{14}}$

Remark 2

in \mathbb{R}^2 , $\vec{v} = \langle a, b \rangle = \vec{OP}$, $O(0,0)$, $P(a, b)$

$$|\vec{v}| = \sqrt{a^2 + b^2}$$

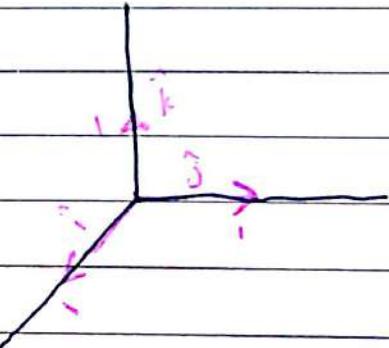
$$\vec{v}^P$$

Remark 3) In \mathbb{R}^3 the basis unit vectors

$$\hat{i} = \langle 1, 0, 0 \rangle$$

$$\hat{j} = \langle 0, 1, 0 \rangle$$

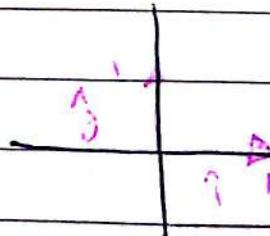
$$\hat{k} = \langle 0, 0, 1 \rangle$$



(2) In \mathbb{R}^2 basis vectors

$$\hat{i} = \langle 1, 0 \rangle$$

$$\hat{j} = \langle 0, 1 \rangle$$



$$\begin{aligned}
 \# \vec{v} &= \langle a, b, c \rangle \\
 &= \langle 1, 0, 0 \rangle + \langle 0, 1, 0 \rangle + \langle 0, 0, 1 \rangle \\
 &= a \langle 1, 0, 0 \rangle + b \langle 0, 1, 0 \rangle + c \langle 0, 0, 1 \rangle \\
 &= a\hat{i} + b\hat{j} + c\hat{k}
 \end{aligned}$$

Example let $\vec{a} = 2\hat{i} - 3\hat{j}$

$$\vec{b} = \langle 2, 4, -3 \rangle$$

$$\begin{aligned}
 \vec{a} - \vec{b} &= (2-2)\hat{i} + (-3-4)\hat{j} + (0-(-3))\hat{k} \\
 &= -7\hat{j} + 3\hat{k}
 \end{aligned}$$

$$\# |\vec{a}| = \sqrt{a^2 + b^2 + c^2}$$

Notation \Rightarrow

V_2 : the set of all vectors in \mathbb{R}^2

V_3 : $=$ $=$ $=$ $=$ $=$ $= \mathbb{R}^3$

See 12.3 Dot product.

$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$

$$\vec{b} = \langle b_1, b_2, b_3 \rangle$$

The dot product of \vec{a} and \vec{b} is :-

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$\vec{a}, \vec{b} \in \mathbb{R}$$

Example let $\vec{a} = 2\hat{i} - 3\hat{j}$

$$\vec{b} = \langle 5, -7, -3 \rangle$$

$$\begin{aligned}\vec{a} \cdot \vec{b} &= \langle 2, -3, 0 \rangle, \quad \langle 5, 7, -3 \rangle \\ &= (2)5 + (3)(7) + (0)(-3) \\ &= -11\end{aligned}$$

proper terms

$$\text{1} \quad \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$\text{2} \quad \vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

$$\text{3} \quad (\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{d}$$

$$\text{4} \quad (a \vec{u}) \cdot \vec{v} = \vec{u} \cdot (a \vec{v}) = a (\vec{u} \cdot \vec{v})$$

Remark: $\vec{a} = \langle a_1, a_2, a_3 \rangle$

$$|\vec{a}|^2 = a_1^2 + a_2^2 + a_3^2$$

$$\vec{a} \cdot \vec{a} = a_1^2 + a_2^2 + a_3^2$$

$$\# |\vec{a}|^2 = \vec{a} \cdot \vec{a}$$

Rule: let \vec{u}, \vec{v} be vectors, a, b be scalars
then

$$\text{1} \quad |a\vec{u} + b\vec{v}|^2 = a^2 |\vec{u}|^2 + 2ab \vec{u} \cdot \vec{v} + b^2 |\vec{v}|^2$$

$$\text{2} \quad |a\vec{u} - b\vec{v}|^2 = a^2 |\vec{u}|^2 - 2ab \vec{u} \cdot \vec{v} + b^2 |\vec{v}|^2$$

Proof:

$$\text{3} \quad |a\vec{u} - b\vec{v}|^2 = (a\vec{u} - b\vec{v}) \cdot (a\vec{u} - b\vec{v})$$

$$= a\vec{u} \cdot a\vec{u} - a\vec{u} \cdot b\vec{v} - b\vec{v} \cdot a\vec{u} + b\vec{v} \cdot b\vec{v}$$

$$= a^2 \vec{u} \cdot \vec{u} - ab \vec{u} \cdot \vec{v} - ab \vec{v} \cdot \vec{u} + b^2 \vec{v} \cdot \vec{v}$$

$$\Rightarrow a^2 |\vec{u}|^2 - 2ab \vec{u} \cdot \vec{v} + b^2 |\vec{v}|^2$$

Ex: let $|\vec{a}| = 3$, $|\vec{b}| = 6$
 and $|2\vec{a} - 3\vec{b}| = 12$

1) find $\vec{a} \cdot \vec{b}$ 2) find $|\vec{a} + 4\vec{b}|$

Soln. $|2\vec{a} - 3\vec{b}|^2 = (12)^2$

$$4|\vec{a}|^2 - (2)(2)(3)\vec{a} \cdot \vec{b} + 9|\vec{b}|^2 = 144$$

$$36 - 12\vec{a} \cdot \vec{b} + 324 = 144$$

$$-12\vec{a} \cdot \vec{b} = -216$$

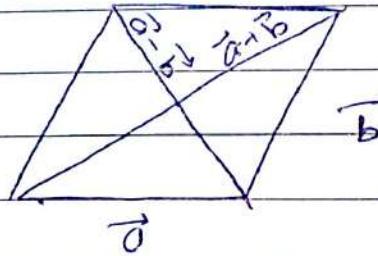
$$\vec{a} \cdot \vec{b} = \frac{-216}{12}$$

2) $|\vec{a} + 4\vec{b}|^2 = |\vec{a}|^2 + 2(4)\vec{a} \cdot \vec{b} + 16|\vec{b}|^2$

$$= \sqrt{\text{ل формуلا اعلاه}} \quad \text{ل формуلا اعلاه مكتوب في المراجعة}$$

Homework Exercise 8 (parallelogram law)

$$|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2(|\vec{a}|^2 + |\vec{b}|^2)$$



Pf.

$$|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 + |\vec{a}|^2 - 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$$

Example 8 If $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|5\vec{a} + 4\vec{b}| = 4$

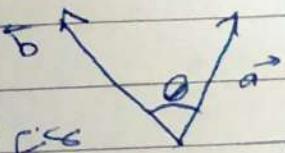
Find $|5\vec{a} + 4\vec{b}|$?

$$\text{Soln. } |\vec{5a} + 4\vec{b}|^2 + |\vec{5a} - 4\vec{b}|^2 = 2(|\vec{5a}|^2 + |\vec{4b}|^2)$$

$$|\vec{5a} + 4\vec{b}|^2 + 16 = 2(25(a) + 16(a))$$

$$\text{Rule is } \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

where θ is the angle between \vec{a}, \vec{b} $\theta \in [0, \pi]$
as in the figure



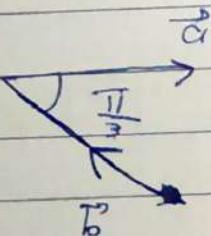
لما زوجي \vec{a} و \vec{b} زاوية حادة \Leftrightarrow زوجي \vec{a} و \vec{b} زاوية حادة

Example B) Find \vec{a}, \vec{b}

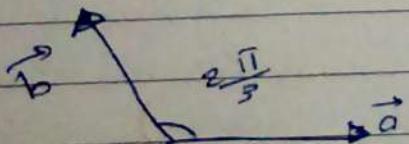
$$\text{where } |\vec{a}| = 2, |\vec{b}| = 6$$

$$|\vec{a}| = 6$$

$$2|\vec{b}| = 6 \Rightarrow |\vec{b}| = 3$$



لما زوجي \vec{a} و \vec{b} زاوية منفرجة



$$\begin{aligned} \vec{a} \cdot \vec{b} &= |\vec{a}| |\vec{b}| \cos \theta = (6)(3) \cos \left(\frac{2\pi}{3}\right) \\ &= 18 \left(-\cos \frac{\pi}{3}\right) \\ &= -18 \left(\frac{1}{2}\right) = -9 \end{aligned}$$

	$\pi/6$	$\pi/3$	$2\pi/3$
\sin	$1/2$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
\cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$

Remark: let θ be the angle between \vec{a}, \vec{b}

(1) $\vec{a} \cdot \vec{b} > 0 \Leftrightarrow \theta$ acute angle \vec{a}, \vec{b}
 (2) $\vec{a} \cdot \vec{b} < 0 \Leftrightarrow \theta$ obtuse angle \vec{a}, \vec{b}

$$\boxed{3} \quad \vec{a} \cdot \vec{b} = 0 \iff \theta = \frac{\pi}{2}$$

$\iff \vec{a}, \vec{b}$ are perpendicular
orthogonal
Normal.

Example Are \vec{a}, \vec{b} perpendicular 2!

$$\vec{a} = 3\hat{i} - 4\hat{j} + \hat{k}$$

$$\vec{b} = \hat{i} - 3\hat{k}$$

$$\boxed{1} \quad \text{Yes since } \vec{a} \cdot \vec{b} = (3)(1) + (-4)(0) + (1)(-3) = 0$$

$$\boxed{2} \quad \vec{a} = 2\hat{i} - 5\hat{k}$$

$$\vec{b} = \langle 1, 1, 1 \rangle$$

$$\boxed{3} \quad \text{No since } \vec{a} \cdot \vec{b} = (2)(1) + (0)(1) + (-5)(1) \neq 0$$

Note $\Rightarrow \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$ where \vec{a}, \vec{b} are two vectors

$$\theta = \cos^{-1} \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

Example Find the angle between

$$\vec{u} = 3\hat{j} - 2\hat{k}$$

$$\vec{v} = 3\hat{i} + 6\hat{k}$$

$$\theta = \cos^{-1} \left(\frac{-12}{\sqrt{13} \times \sqrt{45}} \right)$$

Exercises 8 If $\vec{u} + \vec{v}$, $\vec{u} - \vec{v}$ are orthogonal then

Show that $|\vec{u}| = |\vec{v}|$

pf: $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = 0$

$$|\vec{u}|^2 - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} - |\vec{v}|^2 = 0$$

$$|\vec{u}|^2 = |\vec{v}|^2 \Rightarrow |\vec{u}| = |\vec{v}|$$

∴ Recall that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, $\theta \in [0, \pi]$

∴ Defs The direction angles of a vector \vec{a} , are α, β, γ
where α is angle between \vec{a} and \vec{i}

$$\begin{array}{c} \beta \text{ is } \angle \text{ between } \vec{a} \text{ and } \vec{j} \\ \alpha \text{ is } \angle \text{ between } \vec{a} \text{ and } \vec{k} \end{array}$$

$\cos \alpha, \cos \beta, \cos \gamma$, are direction cosines of \vec{a}

Rule: Let $\vec{a} = \langle a_1, a_2, a_3 \rangle$

$$\therefore \cos \alpha = \frac{\vec{a} \cdot \vec{i}}{|\vec{a}| |\vec{i}|} = \frac{a_1}{|\vec{a}|} \Rightarrow \boxed{\alpha = \cos^{-1} \frac{a_1}{|\vec{a}|}}$$

$$\therefore \cos \beta = \frac{\vec{a} \cdot \vec{j}}{|\vec{a}| |\vec{j}|} = \frac{a_2}{|\vec{a}|} \Rightarrow \boxed{\beta = \cos^{-1} \frac{a_2}{|\vec{a}|}}$$

$$\therefore \cos \gamma = \frac{\vec{a} \cdot \vec{k}}{|\vec{a}| |\vec{k}|} = \frac{a_3}{|\vec{a}|} \Rightarrow \boxed{\gamma = \cos^{-1} \frac{a_3}{|\vec{a}|}}$$

Rule: $\vec{\sigma} = \langle |\vec{a}| \cos \alpha, |\vec{a}| \cos \beta, |\vec{a}| \cos \gamma \rangle$

PF. $\vec{\sigma} = \langle |\vec{a}| \cos \alpha, |\vec{a}| \cos \beta, |\vec{a}| \cos \gamma \rangle$

$$|\vec{a}|^2 = |\vec{a}|^2 \cos^2 \alpha + |\vec{a}|^2 \cos^2 \beta + |\vec{a}|^2 \cos^2 \gamma \quad \therefore |\vec{a}|^2$$

$$1 = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$$

Example. Find the direction cosines and direction angles of $\vec{a} = \langle 1, -2, \sqrt{3} \rangle$

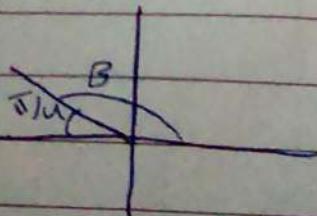
Sol. $\cos \alpha = \frac{1}{2\sqrt{2}}$

$$\cos \beta = \frac{-2}{2\sqrt{2}} = \frac{-1}{\sqrt{2}} \quad \left. \begin{array}{l} \\ \end{array} \right\} \rightarrow \text{direction cosines}$$

$$\cos \gamma = \frac{\sqrt{3}}{2\sqrt{2}}$$

$$\alpha = \cos^{-1} \frac{1}{2\sqrt{2}}$$

$$\beta = \cos^{-1} \frac{-1}{\sqrt{2}} = \frac{3\pi}{4}$$



$$\gamma = \cos^{-1} \frac{\sqrt{3}}{2\sqrt{2}}$$

Example 8 If α, β, γ are direction angles of \vec{a}
 S.t. $\alpha = \frac{\pi}{4}$, $\beta = \frac{2\pi}{3}$, Find all possible values of γ

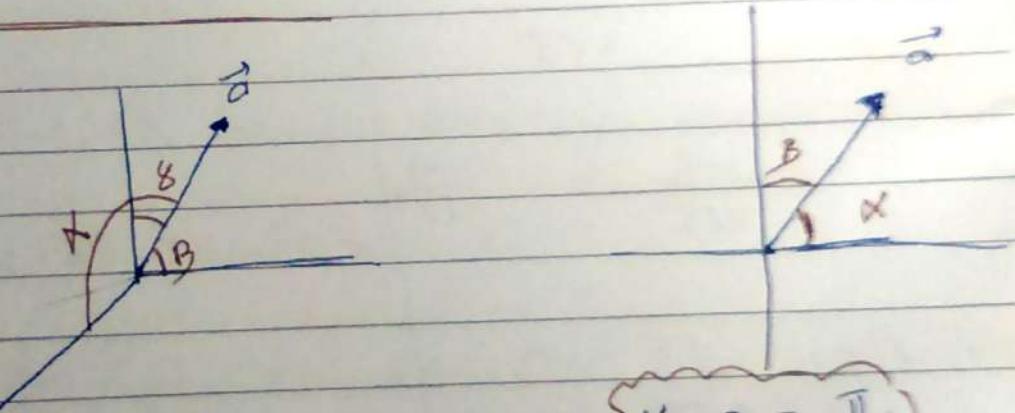
Soln: $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

$$\cos^2 \left(\frac{\pi}{4}\right) + \cos^2 \left(\frac{2\pi}{3}\right) + \cos^2 \gamma = 1$$

$$\frac{1}{2} + \frac{1}{4} + \cos^2 \gamma = 1 \Rightarrow \cos^2 \gamma = \frac{1}{4}$$

$$\cos \gamma = \frac{1}{2} \quad \text{or} \quad = -\frac{1}{2}$$

$$\gamma = \frac{\pi}{3} \quad \text{or} \quad \gamma = \frac{2\pi}{3}$$



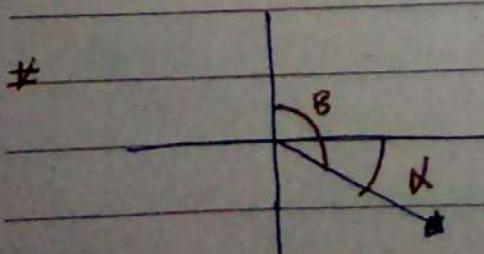
$$\alpha + \beta = \frac{\pi}{2}$$

$$\cos^2 \alpha + \cos^2 \beta = 1$$

$$\cos^2 \alpha + \cos^2 \left(\frac{\pi}{2} - \alpha\right) = 1$$

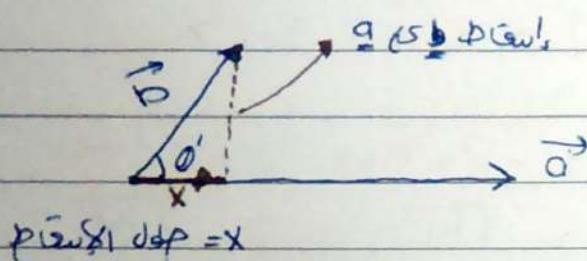
$$\cos^2 \alpha + \sin^2 \alpha = 1$$

$\cos \left(\frac{\pi}{2} - \alpha\right)$
 $= \sin \alpha$



$$\beta - \alpha = \frac{\pi}{2}$$

#



$$\cos \theta = \frac{x}{|\vec{b}|}, \quad \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

$$x = |\vec{b}| \cos \theta = |\vec{b}| \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

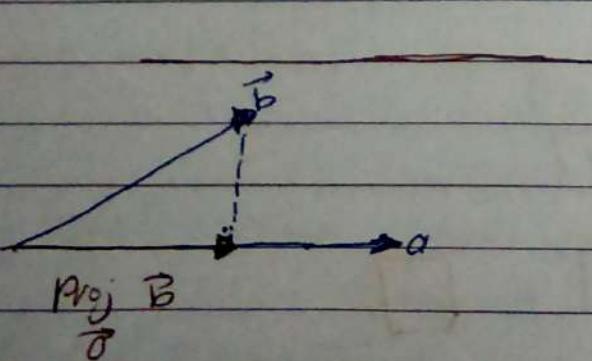
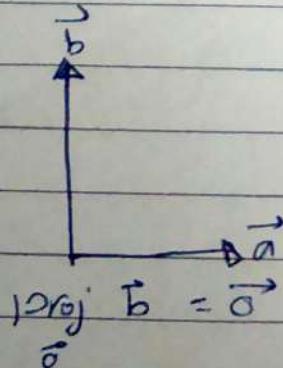
$$x = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$$

Def 8.2 ① The scalar projection (proj.)

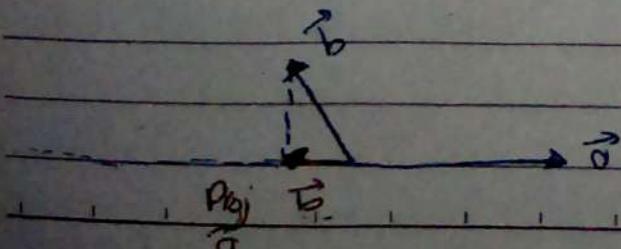
of \vec{b} onto \vec{a} is $\text{Comp } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$

② The vector proj. of \vec{b} onto \vec{a} is,

$$\text{proj } \vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \right) \vec{a}$$



$$\vec{a} \cdot \vec{b} = 0 \quad (\cos 90^\circ)$$



Example 8 Find the scalar proj. and vector proj. of $\vec{u} = \langle 1, 1, 2 \rangle$ onto $\vec{v} = \langle -2, 3, 1 \rangle$

$$\text{Sol: Comp } \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|} = \frac{-2+3+2}{\sqrt{14}} = \frac{3}{\sqrt{14}}$$

$$\text{Proj } \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \vec{v} = \frac{3}{14} \langle -2, 3, 1 \rangle$$

Remark 8

$$\left| \frac{\text{proj } \vec{b}}{\vec{a}} \right| = \left| \frac{\text{Comp } \vec{b}}{\vec{a}} \right| \rightarrow \text{Also}$$

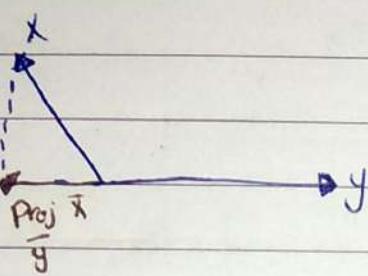
Example 8 If $\vec{x} \cdot \vec{y} = -3$, $|\vec{y}| = 6$

Find $\left| \frac{\text{proj } \vec{x}}{\vec{y}} \right|$ and draw $\vec{x} + \text{proj}_{\vec{y}} \vec{x}$

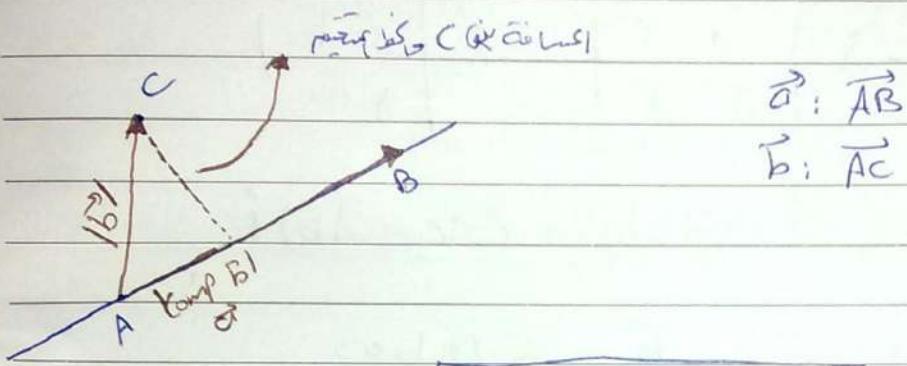
$$\text{Sol: } \left| \frac{\text{proj } \vec{x}}{\vec{y}} \right| = \left| \frac{\text{Comp } \vec{x}}{\vec{y}} \right|$$

$$= \left| \frac{\vec{x} \cdot \vec{y}}{|\vec{y}|} \right|$$

$$= \left| \frac{-3}{6} \right| = \boxed{\frac{1}{2}}$$



" \perp " at point \Rightarrow ortho. of



$$\vec{a} : \vec{AB}$$

$$\vec{b} : \vec{AC}$$

$$\text{dist}(c, \text{line}) = \sqrt{|\vec{b}|^2 - |\text{comp } \vec{b}|^2}$$

Example 2 Find the distance from the pt $(P)(-1, 1, 2)$

and the line that pass through the pt. $Q(1, 2, 1)$, $R(0, 0, 1)$

Sol 2 $\vec{a} = QR = \langle -1, -2, 0 \rangle$ کی اکھیزی
 $\vec{b} = QP = \langle -2, -1, 1 \rangle$

$$\text{dist}(P, \text{line}) = \sqrt{|\vec{b}|^2 - |\text{comp } \vec{b}|^2} = \sqrt{6 - \left(\frac{4}{\sqrt{5}}\right)^2}$$

Sec "2.4" The cross product

let $\vec{u} = \langle a, b, c \rangle$
 $\vec{v} = \langle d, e, f \rangle$

in \mathbb{V}_3 کوئی یہی ہے

The cross product of \vec{u} and \vec{v} is

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ d & e & f \end{vmatrix}$$

$$= +\hat{i} \begin{vmatrix} b & c \\ e & f \end{vmatrix} - \hat{j} \begin{vmatrix} a & c \\ d & f \end{vmatrix} + \hat{k} \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

$$= (bf - ce)\hat{i} - (af - dc)\hat{j} + (ae - db)\hat{k}$$

Ex 8, let $\vec{a} = \langle 3, 2, 1 \rangle$, $\vec{b} = \langle -1, 1, 0 \rangle$

Find $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$

Sols,

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 1 \\ -1 & 1 & 0 \end{vmatrix}$$

$$= [(2)(0) - (1)(1)]\hat{i} - [3(0) - (-1)(1)]\hat{j} + [(3)(1) - (-1)(2)]\hat{k}$$

$$= -\hat{i} - \hat{j} + 5\hat{k}$$

$$\vec{b} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 0 \\ 3 & 2 & 1 \end{vmatrix}$$

$$= [(1)(1) - (2)(0)]\hat{i} - [(-1)(1) - (3)(0)]\hat{j} + [(-1)(2) - (3)(1)]\hat{k}$$

$$= \hat{i} + \hat{j} - 5\hat{k}$$

observe that $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$

Properties 8

$$\textcircled{1} \quad \vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

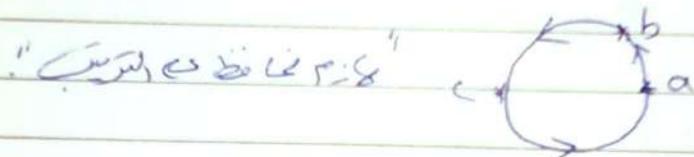
$$\textcircled{2} \quad \vec{a} \times \vec{a} = \vec{0}$$

$$\textcircled{3} \quad (c\vec{a}) \times \vec{b} = \vec{a} \times (c\vec{b}) = c(\vec{a} \times \vec{b})$$

$$\textcircled{4} \quad \vec{a} \times \vec{a} = \vec{a} \times \vec{0} = \vec{0} \Rightarrow \text{zero}$$

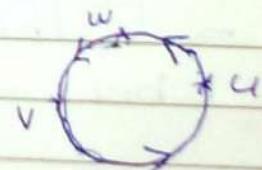
$$\textcircled{5} \quad \vec{a} \times (\vec{b} \pm \vec{c}) = \vec{a} \times \vec{b} \pm \vec{a} \times \vec{c}$$

$$\textcircled{6} \quad \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{c} \cdot (\vec{a} \times \vec{b}) = \vec{b} \cdot (\vec{c} \times \vec{a})$$



Ex 8 If $\vec{u} \cdot (\vec{w} \times \vec{v}) = -7$, find $\vec{w} \cdot (\vec{u} \times 3\vec{v})$

$$\text{Sol 8) } \vec{w} \cdot (\vec{u} \times 3\vec{v}) = 3\vec{w} \cdot (\vec{u} \times \vec{v}) = 3(-7) = 21$$



Ex 9 Prove that $(\vec{u} - \vec{v}) \times (\vec{u} + \vec{v}) = 2(\vec{u} \times \vec{v})$

$$\text{Pf 8) } (\vec{u} - \vec{v}) \times (\vec{u} + \vec{v}) = \vec{u} \times \vec{u} + \vec{u} \times \vec{v} - \vec{v} \times \vec{u} - \vec{v} \times \vec{v}$$

$$= \vec{u} \times \vec{v} - (-4 \times \vec{v}) = 2(\vec{u} \times \vec{v})$$

Remark 8

$\square \vec{a} \times (\vec{b} \times \vec{c})$, $(\vec{a} \times \vec{b}) \times \vec{c}$ need not be equal

$$\square \hat{i} \times \hat{j} = \hat{k}$$

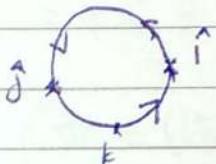
$$\hat{j} \times \hat{i} = -\hat{k}$$

$$\hat{j} \times \hat{k} = \hat{i}$$

$$\hat{k} \times \hat{j} = -\hat{i}$$

$$\hat{k} \times \hat{i} = \hat{j}$$

$$\hat{i} \times \hat{k} = -\hat{j}$$



To show \square :

$$\hat{i} \times (\hat{j} \times \hat{j}) = \hat{i} \times \vec{0} = \vec{0}$$

$$(\hat{i} \times \hat{j}) \hat{j} = \hat{k} \times \hat{j} = -\hat{i}$$

$$\therefore \hat{i} \times (\hat{j} \times \hat{j}) \neq (\hat{i} \times \hat{j}) \hat{j}$$

Rule 8:

$$|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$$

θ , angle between \vec{a}, \vec{b}

$$\text{Remark 8: } \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|}$$

$$\cos \theta = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{a}| |\vec{b}|}$$

Ex: Prove that

$$\square |\vec{a} \times \vec{b}| = \sqrt{|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2} \Rightarrow \text{Ans}$$

Passed

$$\boxed{2} |\vec{a} \cdot \vec{b}| = \sqrt{|\vec{a}|^2 |\vec{b}|^2 - |\vec{a} \times \vec{b}|^2}$$

$$\boxed{3} \vec{a} \cdot \vec{b} = \begin{cases} |\vec{a}|^2 |\vec{b}|^2 - |\vec{a} \times \vec{b}|^2 & \text{angle between } \vec{a}, \vec{b} \text{ acute} \end{cases}$$

$$\boxed{4} \vec{a} \cdot \vec{b} = -\sqrt{|\vec{a}|^2 |\vec{b}|^2 - |\vec{a} \times \vec{b}|^2} \text{ angle between } \vec{a}, \vec{b} \text{ obtuse}$$

$$\text{Pr} \sin^2 \theta + \cos^2 \theta = 1$$

$$\frac{|\vec{a} \times \vec{b}|^2}{|\vec{a}|^2 |\vec{b}|^2} + \frac{(\vec{a} \cdot \vec{b})^2}{|\vec{a}|^2 |\vec{b}|^2} = 1$$

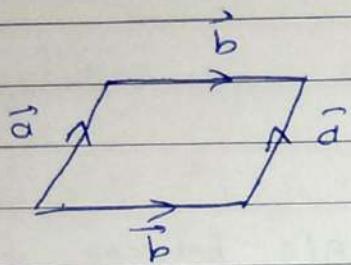
$$|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$$

$$\boxed{1} |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2$$

$$|\vec{a} \times \vec{b}| = \sqrt{|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2}$$

$$\boxed{2} (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2 - |\vec{a} \times \vec{b}|^2$$

$$(\vec{a} \cdot \vec{b}) = \sqrt{|\vec{a}|^2 |\vec{b}|^2 - |\vec{a} \times \vec{b}|^2}$$



area of parallelogram *

Job area $\vec{a} \times \vec{b}$ also cross product of \vec{a} & \vec{b} *

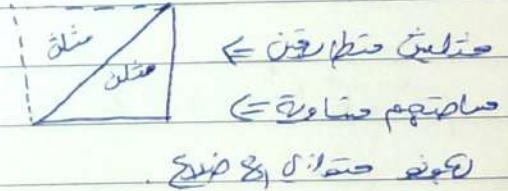
Pascal area *

Rule 2) The area of the parallelogram determined by the vectors \vec{a}, \vec{b} is

$$\text{Area} = |\vec{a} \times \vec{b}|$$

* triangle determined by \vec{a}, \vec{b} is

$$\text{Area} = \frac{1}{2} |\vec{a} \times \vec{b}|$$



2) The volume of the parallelepiped determined by $\vec{a}, \vec{b}, \vec{c}$ is

$$\text{Volume} = |\vec{a} \cdot (\vec{b} \times \vec{c})|$$

Remark 2) $\vec{a} = \langle a_1, a_2, a_3 \rangle$

$\vec{b} = \langle b_1, b_2, b_3 \rangle$

$\vec{c} = \langle c_1, c_2, c_3 \rangle$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= a_1 [(b_2)(c_3) - (c_2)(b_3)] - a_2 [(b_1)(c_3) - (c_1)(b_3)] + a_3 [(b_1)(c_2) - (c_1)(b_2)]$$

$\vec{a} \cdot (\vec{b} \times \vec{c})$ called scalar triple of $\vec{a}, \vec{b}, \vec{c}$

Example 8) Find the area of the parallelogram and triangle

determined by $\vec{u} = \langle 1, -1, 1 \rangle$
 $\vec{v} = \langle 2, 1, 0 \rangle$

$$\text{Sol 8) } |\vec{u} \times \vec{v}| = \sqrt{|\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \cdot \vec{v})^2}$$

$$= \sqrt{3(5) - (1)^2} = \sqrt{14}$$

Area of parallelogram $\leftarrow \sqrt{14}$

Area of triangle $\leftarrow \frac{\sqrt{14}}{2}$

Example ٣) Find the Area of the triangle

with vertices $A(1, -1)$, $B(2, 5)$, $C(1, 0)$

موجز بیان اشتمانی میان \mathbb{R}^2 و مساحت

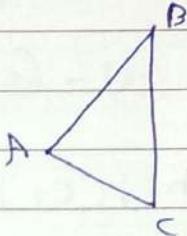
Sol ٣) \rightarrow اثبات مساحت

$$\vec{AB} = \langle 1, 6, 0 \rangle \Rightarrow$$

$$\vec{AC} = \langle 0, 1, 0 \rangle$$

موجز بیان اشتمانی مساحت

میان \mathbb{R}^2 و مساحت



$$\text{Area} = \frac{1}{2} \left| \vec{AB} \times \vec{AC} \right|$$

$$= \frac{1}{2} \sqrt{|\vec{AB}|^2 |\vec{AC}|^2 - (\vec{AB} \cdot \vec{AC})^2}$$

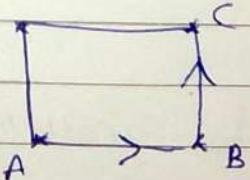
$$= \frac{1}{2} \sqrt{37(1) - (6)^2} = \frac{1}{2}$$

Ex ٤) Find the Area of parallelogram ABCD with vertices $A(1, -1)$, $B(2, 5)$, $C(1, 0)$

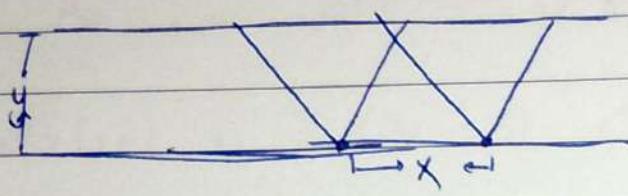
$$\vec{AB} = \langle 1, 6, 0 \rangle$$

$$\vec{BC} = \langle -1, -5, 0 \rangle$$

$$\text{Area} = \left| \vec{AB} \times \vec{BC} \right|$$



$$= \sqrt{|\vec{AB}|^2 |\vec{BC}|^2 - (\vec{AB} \cdot \vec{BC})^2} = \sqrt{37(26)^2 - (-31)^2}$$



الإجابة هي المثلث المتساوي الساقين \Rightarrow
 المثلث المتساوي الساقين له مساحة $\frac{1}{2} \times \text{base} \times \text{height}$
 مساحة المثلث المتساوي الساقين $= \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$
 $\frac{1}{2} \text{ cm}^2$

Ex: find the Volume of the Parallelepiped determined by

II) the vectors $\vec{a} = \langle 6, 3, -1 \rangle$, $\vec{b} = \langle 0, 1, 2 \rangle$

and $\vec{c} = \langle 1, -2, 5 \rangle$

وتحارب

EJ with adjacent edges \overrightarrow{PQ} , \overrightarrow{PR} , \overrightarrow{PS} , where $P(-2, 1, 0)$
 معاً

$Q(4, 4, -1)$, $R(-2, 2, 2)$ $\rightarrow S(2, -1, 5)$

Sol: II $\vec{a} \cdot (\vec{b} \times \vec{c}) =$

$$\begin{vmatrix} 6 & 3 & -1 \\ 0 & 1 & 2 \\ 4 & -2 & 5 \end{vmatrix}$$

~~$$\vec{a} \cdot (\vec{b} \times \vec{c}) = 6(5 - -4) - 3(6 - 8) + -1(0 - 4)$$~~

$$= 54 + 24 + 4$$

$$= 82$$

Volume is

$$|\vec{a} \cdot (\vec{b} \times \vec{c})| = |82| = 82$$

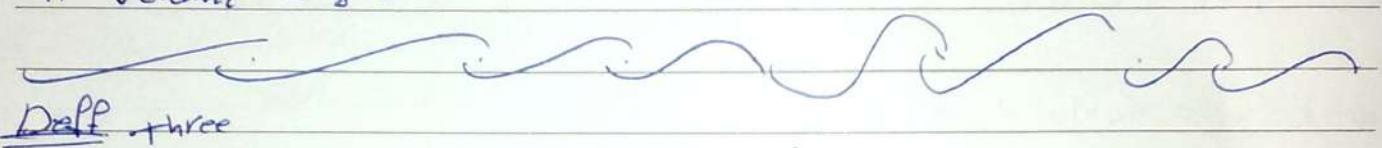
$$② \vec{a} = \vec{p}\vec{\varphi} = \langle 6, 3, -1 \rangle$$

$$\vec{b} = \vec{p}\vec{R} = \langle 0, 1, 2 \rangle$$

$$\vec{c} = \vec{p}\vec{s} = \langle 4, -2, 5 \rangle$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = 8^2 \text{ by equation 1}$$

$$\therefore \text{Volume} = 8^2$$



Defn three

1) ~~Three~~ points are collinear if they are on the same line

2) four = = coplanar = s \rightarrow s = plane.

Rules

1) Three points, A, B, C are collinear $\Leftrightarrow |\vec{AB} \times \vec{AC}| = 0$

1) four = A, B, C, D are coplanar $\Leftrightarrow \vec{AB} \cdot (\vec{AC} \times \vec{AD}) = 0$

Ex: are the points A <1, 1, 0>, B <2, -1, 1>, C <1, 0, 0>

Collinear 2!

$\vec{AB} \times \vec{AC} \neq 0$ since non

$$\text{Sol: } \vec{AB} = \langle 1, -2, 1 \rangle$$

$$\vec{AC} = \langle 0, -1, 0 \rangle$$

$$\vec{AB} \times \vec{AC} = \sqrt{|\vec{AB}|^2 |\vec{AC}|^2 - (\vec{AB} \cdot \vec{AC})^2}$$

$$= \sqrt{6 \times 1 - (2)^2} = \sqrt{2} \neq 0 \therefore \text{Not Collinear}$$

$$3,50 \leftarrow 2,40 \leftarrow 20^2 \leftarrow \Sigma \cdot 1/50$$

Ex8) Are the pts: $P(-2, 1, 0)$, $Q(4, 4, -1)$,

$R(-2, 2, 2)$, $S(2, -1, 5)$ Coplaner?

$$\vec{PQ} = \langle 6, 3, -1 \rangle$$

$$\vec{PR} = \langle 0, 1, 2 \rangle$$

$$\vec{PS} = \langle 4, -2, 5 \rangle$$

$$\vec{PQ} \cdot (\vec{PR} \times \vec{PS}) = \begin{vmatrix} 6 & 3 & -1 \\ 0 & 1 & 2 \\ 4 & -2 & 5 \end{vmatrix} = 82 \neq 0$$

∴ Not Coplaner

Exercises

Find all values of a if exist s.t. the pts.

1) $A(a, 1, 2)$, $B(3, 1, 5)$, $C(0, 1, 0)$ are collinear

2) $A(a, 1, 2)$, $B(3, 1, 5)$, $C(0, 1, 0)$, $D(1, 1, 1)$ are coplaner.

Remark:

1) Two vectors are parallel $\Leftrightarrow \vec{a} = k \vec{b}$, k scalar

or $\vec{b} = k \vec{a}$ k scalar

2) Two vectors are parallel $\Leftrightarrow \vec{a} \times \vec{b} = \vec{0}$
 $|\vec{a} \times \vec{b}| = 0$

3) \vec{a}, \vec{b} perpendicular $\Leftrightarrow \vec{a} \cdot \vec{b} = 0$

Example: $\langle 3, 2 \rangle \parallel \langle 6, 4 \rangle$ Since

$$\langle 3, 2 \rangle = \frac{1}{2} \langle 6, 4 \rangle$$

or since $|\langle 3, 2 \rangle \times \langle 6, 4 \rangle| = \sqrt{13(52) - (28)^2} = 0$

① $\vec{a} = \langle 1, 2, 3 \rangle$

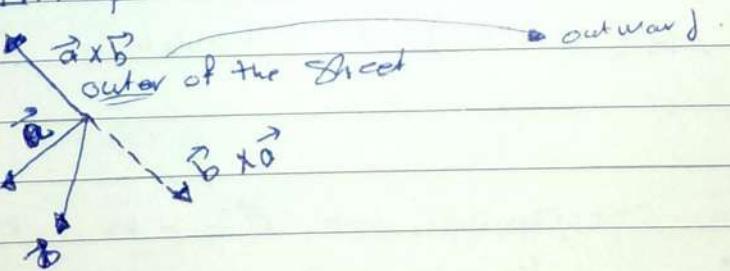
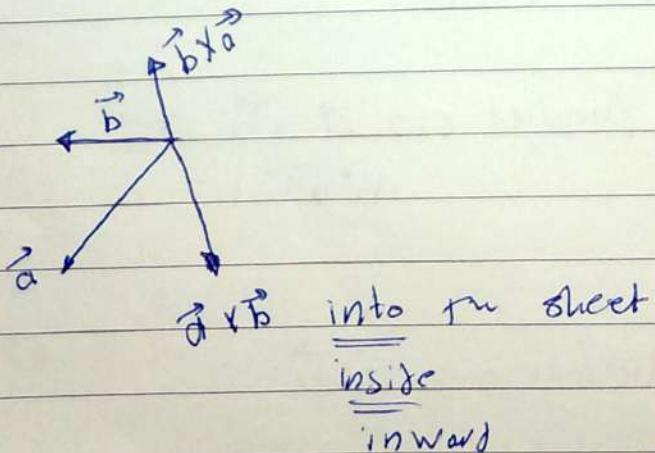
$\vec{b} = \langle 3, 6, -9 \rangle$

$\vec{a} \times \vec{b}$ since There is no scalar k s.t

$$\vec{a} = k \vec{b}$$

or $|\vec{a} \times \vec{b}| = \sqrt{14(126) - (-12)^2} \neq 0$

Geometric Interpretation of $\vec{a} \times \vec{b}$ is

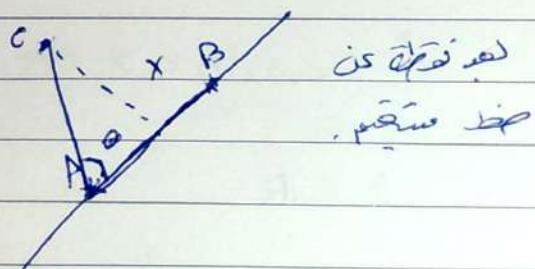


$\vec{a} \times \vec{b}$ perpendicular to \vec{a} and \vec{b} also

$\vec{a} \times \vec{b}$ = to the plane containing \vec{a} , \vec{b}
and is the area of the parallelogram

Section 12.5 equations of lines and planes:

#



$$\sin \theta = \frac{x}{|\vec{AC}|}$$

$$x = |\vec{AC}| \sin \theta$$

$$= |\vec{AB}| |\vec{AC}| \sin \theta$$
$$\quad \quad \quad |\vec{AB}|$$

$$= \frac{|\vec{AB} \times \vec{AC}|}{|\vec{AB}|} \Rightarrow$$
$$\text{Area of parallelogram}$$

Example: Find the distance from the pt. P (1, 2, 1) on the line through Q (1, 0, 1) and R (2, 1, 5)

$$\text{Sol: } \vec{QP} = \langle 0, 2, 0 \rangle$$

$$\vec{QR} = \langle 1, 1, 4 \rangle$$

$$\text{distance} = \frac{|\vec{QP} \times \vec{QR}|}{|\vec{QR}|}$$

Defs the parametric (param.) eqs. of the line

"L" that pass through the pt. $A(x_0, y_0, z_0)$

and parallel to the vector $\vec{v} = \langle a, b, c \rangle$ are

$$x = x_0 + at, \text{ where } t \in \mathbb{R}$$

$$y = y_0 + bt$$

$$z = z_0 + ct$$

pts on L are (x_0, y_0, z_0) when $t = 0$

$(x_0 + a, y_0 + b, z_0 + c)$ when $t = 1$

$(x_0 - a, y_0 - b, z_0 - c)$ when $t = -1$

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \quad \begin{bmatrix} \text{symmetric equations} \\ \text{of L} \end{bmatrix}$$

where $a \neq 0, b \neq 0, c \neq 0$

when $a = 0$

$$x = x_0 \rightarrow \frac{y - y_0}{b} = \frac{z - z_0}{c} \rightarrow b \neq 0, c \neq 0$$

when $b = 0$

$$y = y_0 \rightarrow \frac{x - x_0}{a} = \frac{z - z_0}{c} \rightarrow a \neq 0, c \neq 0$$

When $c = 0$

$$z = 0 \Rightarrow \frac{x-x_0}{a} = \frac{y-y_0}{b} \Rightarrow a \neq 0, b \neq 0$$

إذاً الميل $\neq 0$ و $b \neq 0$

و $a \neq 0$ \square

و $b \neq 0$ \square

Example: Find param eqs and symm. eqs of the line

① through the pts. $A(1, 0, 1)$ and parallel to $\vec{u} = \langle 2, -3, 4 \rangle$

② $\Rightarrow A(2, -1, 1), B(3, -1, 2)$

Sol ① param eqs $x = 1 + 2t$
 $y = 0 + -3t$
 $z = 1 + 4t$

symm. eqs $\frac{x-1}{2} = \frac{y}{-3} = \frac{z-1}{4}$

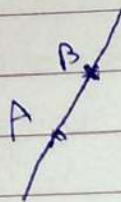
② $\vec{v} = \vec{AB} = \langle 1, 0, 1 \rangle \parallel \text{line}$

param eqs $x = 2 + 1t$
 $y = -1 + 0t$
 $z = 1 + 1t$

symm. eq
 $y = -1, x-2 = z-1$

Ex 20 Find the param and symm eqs of the line that pass through the pts $A(1, 2, 3)$, $B(-2, 5, 7)$. At what pts. This line intersects the xy -plane.

Sol:



$$\vec{u} = \vec{AB} = \langle -3, 3, 4 \rangle \parallel \text{line}$$

pt. on line: A

Param eq. are:

$$x = 1 + 3t$$

$$y = 2 + 3t$$

$$z = 3 + 4t$$

$$\text{Symm eq. are: } \frac{x-1}{-3} = \frac{y-2}{3} = \frac{z-3}{4}$$

The line intersects the xy -plane when $z = 0$
 $\Rightarrow 3 + 4t = 0 \Rightarrow t = -\frac{3}{4}$

$$x \mid = 1 - 3\left(-\frac{3}{4}\right) = 1 + \frac{9}{4} = \frac{13}{4}$$

$$t = -\frac{3}{4}$$

$$y \mid = 2 + 3\left(-\frac{3}{4}\right) = 2 - \frac{9}{4} = -\frac{1}{4}$$

$$t = -\frac{3}{4}$$

$$z \mid = 0$$

$$t = -\frac{3}{4}$$

$$\text{pt. } \left(\frac{13}{4}, -\frac{1}{4}, 0\right)$$

Remark: \square let $\vec{u} \parallel L_1$, $\vec{v} \parallel L_2$, $L_1, L_2 \Rightarrow$ lines \Rightarrow

$$L_1 \parallel L_2 \Leftrightarrow \vec{u} \parallel \vec{v}$$

\square L_1, L_2 two lines, Then

$L_1 \parallel L_2$ or L_1, L_2 intersected or L_1, L_2 are Skewed
($L_1 \parallel L_2$ & L_1, L_2 intersected)

Ex: Determine whether the two lines L_1, L_2 are parallel, intersected or skewed. If the parallel are they the same. If they intersected find the pts. of intersection.

(1) $L_1: x = 1 - 3t \quad y = 2 + 3t \quad z = 3 + 4t$
 $L_2: x = -2 + 3t \quad y = 5 - 3t \quad z = 7 - 4t$

(2) $L_1: x = 2 - 3t \quad y = 2 + t \quad z = 7$
 $L_2: x = 5 + 4t \quad y = 3 - 6t \quad z = 1$

(3) $L_1: x = t \quad y = 3 - t \quad z = 2 + 3t$
 $L_2: x = 1 + 2t \quad y = 2 + t \quad z = 5$

(4) $L_1: x = 1 + t \quad y = -2 + 3t \quad z = 4 - t$
 $L_2: x = 2t \quad y = 3 + t \quad z = -3 + 4t$

ج

Sol 83

الخطوة التي يوازن الملف \rightarrow فن حفاظه "خط"

$$\begin{array}{l} \vec{u} = \langle -3, 3, 4 \rangle \parallel L_1 \\ \vec{v} = \langle 3, -3, -4 \rangle \parallel L_2 \end{array} \quad \left. \begin{array}{l} \\ \end{array} \right\} \vec{u} = -\vec{v}$$

$$\vec{u} \parallel \vec{v} = L_1 \parallel L_2$$

To check whether $L_1 = L_2$?

Take opt. on $L_1 : A(b_2, 3)$ (when $t=0$)
 What is $t=3?$ on b_2 s.t. A on $\frac{b_2}{3}$ is at $t=0$

$$\begin{array}{l} -2+3t=1 \\ 5-3t=2 \\ -3+4t=3 \end{array} \quad \left. \begin{array}{l} t=1 \\ t=1 \\ t=1 \end{array} \right\} \rightarrow \text{Yes } \del{A} \quad \begin{array}{l} A \text{ on } L_2 \text{ when} \\ t=1 \end{array}$$

(2)

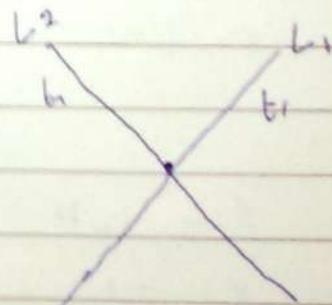
$$\begin{aligned} \vec{u} &= \langle 1, -1, 3 \rangle \parallel L_1 \\ \vec{v} &= \langle 2, 1, 0 \rangle \parallel L_2 \end{aligned} \quad \left. \begin{array}{l} \vec{u} \times \vec{v} \\ \Rightarrow L_1 \times L_2 \end{array} \right\} \text{(not parallel)}$$

Suppos L_1, L_2 intersected

$$t_1 = 1 + 2 + 2$$

$$3 - 1 = 2 + 1$$

$$2 + 3 + 1 = 5$$



مطابق سنت فرانسیس کلمبیا می باشد

الآن ألا يجيء عيًّا في حادثة مماثلة؟

$$t_1 - 2t_2 = 1 \rightarrow (1)$$

$$t_1 - t_2 = -1 \rightarrow (2)$$

$$3t_1 = 3 \rightarrow (3)$$

take (2) (3)

$$3t_1 = 3$$

$$t_1 = 1$$

$$-t_1 - t_2 = -1$$

$$t_2 = 0$$

$$\text{Check (1)} : - t_1 - 2t_2 \stackrel{?}{=} 1$$

$$1 - 2(0) \stackrel{?}{=} 1 \quad (\text{Yes}) \Leftrightarrow L_1, L_2 \text{ intersected when}$$

$$t_1 = 1 \text{ on } L_1$$

$$t_2 = 0 \text{ on } L_2$$

To find the pt. of intersection substitute

$$t_1 = 1 \text{ in } L_1 \quad (\text{or } t_2 = 0 \text{ in } L_2) \quad \text{pt. } (1, 2, 5)$$

$$(3) \quad \vec{u} = \langle -3, 2, 0 \rangle \parallel L_1$$

$$\vec{v} = \langle 9, -6, 0 \rangle \parallel L_2$$

$$\vec{w} = -3\vec{u} \Rightarrow \vec{u} \parallel \vec{v} \Rightarrow L_1 \parallel L_2$$

Take A (2, 0, 7) when $t=0$ on L_1

$$x \Rightarrow 5 + 0 + t = 2 \Rightarrow t = -\frac{1}{3}$$

$$t = -\frac{1}{3}$$

→

$$y \Rightarrow 3 - 6 \left(-\frac{1}{3}\right) = 5 \neq 0 \Rightarrow t = \frac{1}{2} \quad t, \vec{u} \text{ (is same)}$$

✗

∴ A not on L_2

∴ $L_1 \neq L_2$ (These are not the same)

$$(4) \vec{u} = \langle 1, 3, -1 \rangle \parallel L_1$$

$$\vec{v} = \langle 2, 1, 4 \rangle \parallel L_2$$

$$\vec{u} \neq \vec{v} \Rightarrow L_1 \times L_2$$

Suppose L_1, L_2 intersected

$$\begin{array}{l} 1+t_1 = 2t_2 \\ -2+3t_1 = 3+t_2 \\ u-t_1 = -3+4t_2 \end{array} \quad \left. \begin{array}{l} \\ \\ \end{array} \right\} \begin{array}{l} t_1 - 2t_2 = -1 \rightarrow ① \\ 3t_1 - t_2 = 5 \rightarrow ② \\ -t_1 - 4t_2 = -7 \rightarrow ③ \end{array}$$

Take ①, ③

$$\begin{array}{l} t_1 - 2t_2 = -1 \\ -t_1 - 4t_2 = -7 \\ \hline -6t_2 = -8 \end{array}$$

$$t_2 = \frac{4}{3}$$

$$\begin{array}{l} t_1 - 2t_2 = -1 \\ t_1 + 1 = 2t_2 \\ t_1 = 2t_2 - 1 \\ t_1 = 2 \cdot \frac{4}{3} - 1 \\ t_1 = \frac{8}{3} - 1 \\ t_1 = \frac{5}{3} \end{array}$$

$$t_1 - 2 \left(\frac{4}{3} \right) = -1$$

$$t_1 - \frac{8}{3} = -1$$

$$t_1 = -1 + \frac{8}{3} = \frac{5}{3}$$

$$\boxed{2} \quad 3 \left(\frac{5}{3} \right) - \frac{4}{3} \stackrel{?}{=} 5$$

$$\frac{15}{3} - \frac{4}{3} \stackrel{?}{=} 5$$

$$\frac{11}{3} \neq 5 \quad \therefore L_1, L_2 \text{ not intersected}$$

L_1, L_2 Skewed

~~#~~ Remark Let l_1, l_2 be intersected lines

$\vec{u} \parallel l_1, \vec{v} \parallel l_2 \Rightarrow$ the angle θ between l_1, l_2 is

the angle between $\vec{u}, \vec{v} \Rightarrow \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|}$

Def B) The eq. of the plane that pass through the pt. $A(x_0, y_0, z_0)$ and has normal vector

$$\vec{n} = \langle a, b, c \rangle$$

is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

where $a^2 + b^2 + c^2 \neq 0$, a, b, c are not zero

Ex) find the eq. of the plane through the pt. $A(1, 0, 3)$ and with normal $\vec{n} = \langle 4, -2, 0 \rangle$

$$4(x-1) - 2(y-0) + 0(z-3) = 0$$

$$4x - 2y = 4$$

$z = y + x$ where $z = 0$ is the plane

Example: Find the eq. of the plane that pass through the pts. $A(1, 3, 2)$, $Q(3, -1, 6)$, $R(5, 2, 0)$. Find the plane intercepts and sketch this plane.

Sol:

$$AQ = \langle 2, -4, 4 \rangle$$

$$AR = \langle 4, -1, -2 \rangle$$

$$\vec{n} = AQ \times AR = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -4 & 4 \\ 4 & -1 & -2 \end{vmatrix} = 12\mathbf{i} + 20\mathbf{j} + 14\mathbf{k}$$

The eq. of the plane

$$12(x-1) + 20(y-3) + 14(z-2) = 0$$

Intercepts:

x -intercept: when $y=0, z=0$

$$12x - 12 - 60 - 28 = 0$$

$$12x = 100 \Rightarrow x = \frac{100}{12}$$

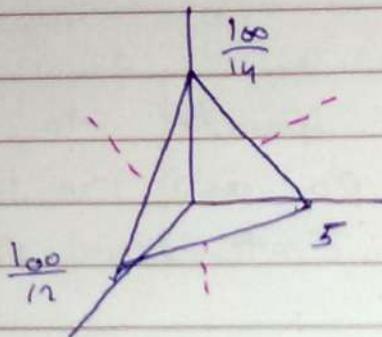
y -intercept: when $x=0, z=0$

$$-12 + 20y - 60 - 28 = 0 \quad y = \frac{100}{2} = 5$$

x -intercept: when $y=0, z=0$

$$-12 - 60 + 14z - 28 = 0$$

$$z = \frac{100}{14}$$



Example 8

Find the pt at which the line

$$L_1: x = 2 + 3t \quad \Rightarrow \quad y = -4t \quad \Rightarrow \quad z = 5$$

intersects the plane $4x + 5y - 2z = 14$

$$\text{Solve: } 4(2 + 3t) + 5(-4t) - 2(5) = 14$$

$$8 + 12t - 20t - 10 = 14$$

$$-2 - 8t = 14$$

$$-8t = 16$$

$$\boxed{t = -2}$$

$$x = 2 + 3(-2) = -4$$

$$\begin{aligned} y &= -4(-2) = 8 \\ z &= 5 \end{aligned} \quad \left. \begin{aligned} \end{aligned} \right\} \text{pt of intersection is } (-4, 8, 5)$$

Example 8: let P_1, P_2 be two planes:

$$P_1: x + z = 1$$

$$P_2: y = 2$$

① Find param eqs of the line of intersection of the planes P_1, P_2

② Find the eq of the plane parallel to the line of intersection of P_1, P_2 and pass through the pt.

$$A(1, 1, 2)$$

3) Find the eq of the plane parallel to both the line of intersection of P_1, P_2 and the line: $L: x=1 \Rightarrow y=3-2t, z=t$, and pass A (1, 1, 2)

Sol: e) intersection of P_1, P_2 is

$$y = 2 \Rightarrow x+2 = -1 \Rightarrow x+y = -1$$

Take $x=0 \Rightarrow y=2 \Rightarrow z=-1 \Rightarrow y=-1$
Ansatz: $0, 2, -1$

$$B(0, -1, -1)$$

Take $x=1 \Rightarrow y=? \Rightarrow z=? \Rightarrow y=-2$

$$C(1, -2, -2)$$

B, C pts on the line of intersection

1) $\vec{v} = \vec{BC} = \langle 1, -1, -1 \rangle$ // line of intersection
param eqs. of line of intersection

$$x=0+t$$

$$y=-1-t$$

$$z=-1-t$$

2) required plane is P_3 ,

\vec{v} in (1) parallel to P

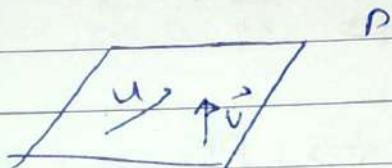
$$\vec{AB} = \langle -1, 2, 3 \rangle$$

$$\vec{AC} = \langle 0, -3, -4 \rangle$$

$$\vec{U} = \vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 3 \\ 0 & -3 & -4 \end{vmatrix}$$

$$= 1 \cancel{-4} i - 4 j + 3 k$$

$$\vec{u} \parallel P$$



$$n = \vec{u} \times \vec{v}$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -4 & 3 \\ 1 & -1 & -1 \end{vmatrix} = 7 \hat{i} + 4 \hat{j} + 3 \hat{k}$$

the eq of plane P is

$$7(x-1) + 4(y-1) + 3(z-2) = 0$$

B Vectors $\vec{v} = \langle 1, -1, -1 \rangle$ from 1
 $\vec{w} = \langle 0, -2, 1 \rangle$ from the line L

\vec{v}, \vec{w} parallel to plane

$$\vec{v} \times \vec{w} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & -1 \\ 0 & -2 & 1 \end{vmatrix} = -3 \hat{i} - \hat{j} - 2 \hat{k}$$

$$eq: -3(x-1) - (y-1) - 2(z-2) = 0$$

Remark 8 let P_1, P_2 be two planes

$\vec{n}_1 \perp P_1, \vec{n}_2 \perp P_2$

↓
samed
place

$\boxed{1} P_1 \parallel P_2 \Leftrightarrow \vec{n}_1 \parallel \vec{n}_2$

$\boxed{2} P_1 \times P_2 \Leftrightarrow P_1, P_2$ intersected

The angle θ between P_1, P_2 is

$$\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1| |\vec{n}_2|}$$

Rule 8 If $A(x_0, y_0, z_0)$ is a pt and

$$P: ax + by + cz + d = 0$$

The distance from the pt A to P

is $\text{dist.}(A, P) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$

plane \rightarrow apsidal rule *

Example 8 Find the distance from the pt $P(1, 1, 2)$ and the plane $2x - 4y + z = 3$

$$\text{Sol: dist.} = \frac{|2(1) - 4(1) + 2 - 3|}{\sqrt{1 + 16 + 1}} = \frac{3}{\sqrt{21}}$$

Remark: $P_1 \neq P_2$ two plane

① $P_1 \neq P_2 \Rightarrow \text{dist. } (P_1, P_2) = 0$

② $P_1 \parallel P_2 \Rightarrow \text{dist. } (P_1, P_2) = \text{dist. } (A, P_2)$
where A pt. on P_1

Example:

① $P_1: x+y=2$
 $\vec{n}_1 = \langle 1, 1, 0 \rangle$

$P_2: y-3z=0$
 $\vec{n}_2 = \langle 0, 1, -3 \rangle$

$\vec{n}_1 \times \vec{n}_2 \Rightarrow P_1, P_2$ intersected

$\therefore \text{dist. } (P_1, P_2) = 0$

② $P_1: x=3y$
 $\vec{n}_1 = \langle 1, -3, 0 \rangle$

$P_2: -2x+6y=1$
 $\vec{n}_2 = \langle -2, 6, 0 \rangle$

$\vec{n}_2 = -2 \vec{n}_1 \Rightarrow \vec{n}_1 \parallel \vec{n}_2 \Rightarrow P_1 \parallel P_2$

A point on P_1 is $y=1, x=3, z=0$

$A = (3, 1, 0)$ on P_1

$\text{dist. } (P_1, P_2) = \text{dist. } (A, P_2) = \frac{|-2(3) + 6(1) - 1|}{\sqrt{4+36}} = \frac{1}{\sqrt{40}}$

Remark: L_1, L_2 two lines

1) If L_1 intersects $L_2 \Rightarrow \text{dist}(L_1, L_2) = 0$

2) $L_1 \parallel L_2 \Rightarrow \text{dist}(L_1, L_2) = \text{dist}(A, L_2)$

where A pt. on L_1

Example: Find the distance between L_1, L_2 where

$$L_1: x = 2 - 3t \quad y = 2 + t \quad \Rightarrow \quad z = 4$$

$$L_2: x = 6 + t \quad y = 1 - 4t \quad z = 5$$

~~such~~ $\vec{U} = \langle -3, 1, 0 \rangle \parallel L_1$

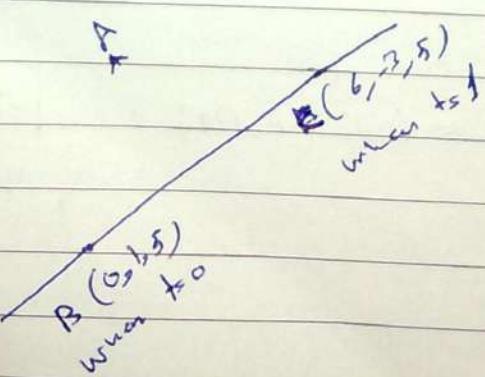
$$\vec{V} = \langle 6 - 4, 0, 1 \rangle \parallel L_2$$

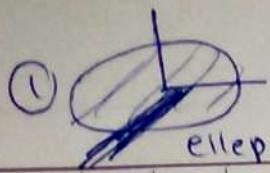
$$\vec{U} \parallel \vec{V} \Rightarrow L_1 \parallel L_2$$

A pt. on L_1 is $A(2, 0, 4) \Rightarrow$ when $t = 0$

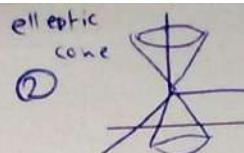
$$\text{dist}(L_1, L_2) = \text{dist}(A, L_2)$$

$$= \frac{|\vec{AB} \times \vec{BC}|}{|\vec{BC}|}$$

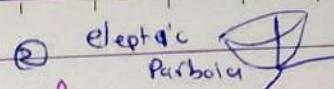




$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$



$$z^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$



Section 12.6 Cylinders and Quadric surfaces

cylinders: surfaces obtained by moving a curve in the direction of a fixed axis.

Example: $y = x^2 \rightarrow x^2 + y^2 = 4$ cylinders

Quadric surface \Rightarrow is the graph of a 2nd degree eq in

the variables x, y, z

$\Gamma = \text{quadric surfaces}$

Example: $x^2 - 3y^2 - 5z^2 = 3$ } quadric surfaces.
 $3xy + 5z^2 - 2 + 3y = 0$

Example 8: Identify (give the name) and sketch the surface

1) $4x^2 + 2y^2 + 9z^2 = 36$

① $z = -\sqrt{x^2 + y^2}$

2) $2x^2 + 4y^2 + 9z^2 = 36$

② $y^2 = 2x^2 + 3z^2$

3) $x^2 - 6x + 3y^2 + z^2 - 10z + 25 = 0$

③ $20x - y^2 - z^2 = 0$

4) $4x^2 - y^2 + z^2 = 6$

④ $20x + y^2 + z^2 = 0$

5) $y^2 + x^2 - z^2 = 7$

⑤ $x^2 + 6x + y^2 + z^2 + 10 = 0$

6) $2x^2 - \frac{y^2}{2} - 16z^2 = 8$

⑥ $x^2 + 6x - y + z^2 + 10 = 0$

7) $y^2 = x^2 + z^2 + 1$

⑦ $z = y^2 - x^2$

8) $y^2 - x^2 + z^2 = 0$

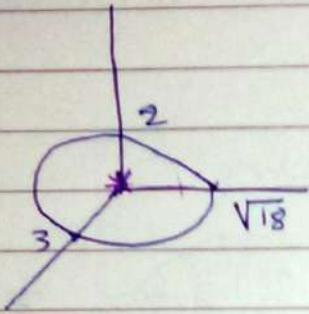
9) $z^2 = x^2 + y^2$

10) $z = \sqrt{x^2 + y^2}$

Sol 8) 1) $\frac{x^2}{9} + \frac{y^2}{12} + \frac{z^2}{4} = 1$ ellipsoid

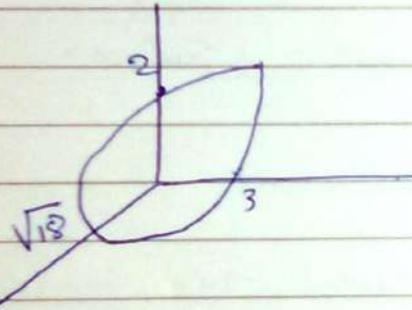
مراد به من قصبة الماء *

رسائل سؤال رقم 8 من مذكرة *



intercept(s) \Rightarrow intercepts

2) eq. $\frac{x^2}{18} + \frac{y^2}{9} + \frac{z^2}{4} = 1$ ellipsoid



3) $x^2 - 6x + 9 + 3y^2 + z^2 - 10z + 25 = 9 + 25 - 25$

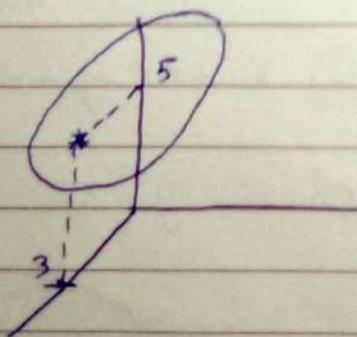
$(x-3)^2 + 3y^2 + (z-5)^2 = 9$

$\frac{(x-3)^2}{9} + \frac{y^2}{3} + \frac{(z-5)^2}{9} = 1$ ellipsoid

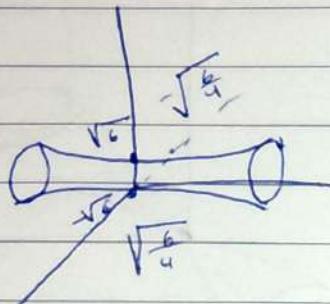
أبعادها 3x3x9 *

أبعادها 3x3x9 *

أبعادها 3x3x9 *

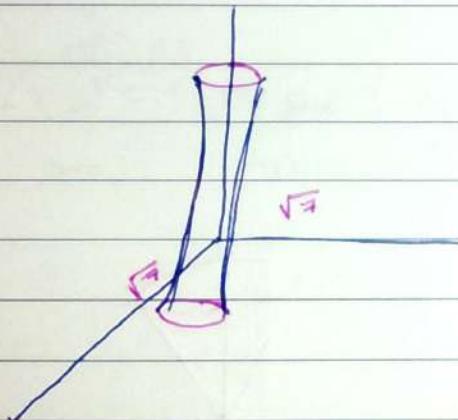


QJ $\frac{x^2}{6} - \frac{y^2}{6} + \frac{z^2}{6} = 1$ Hyperboloid of one sheet

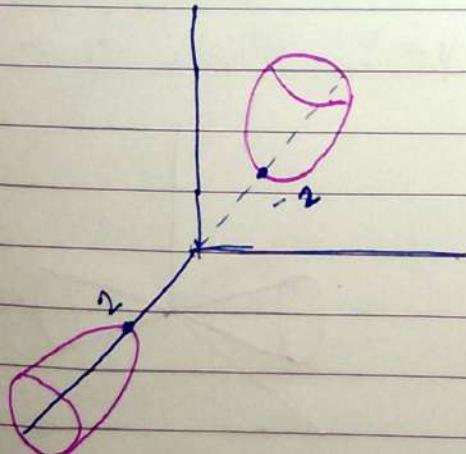


Suppose $z = 0$

5 Hyperboloid of one sheet

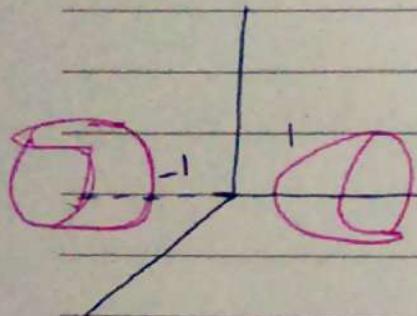


6 $\frac{x^2}{4} - \frac{y^2}{16} - 2z^2 = 1$ Hyperboloid of two sheets.



$$\boxed{7} \quad y^2 - z^2 - x^2 = 1$$

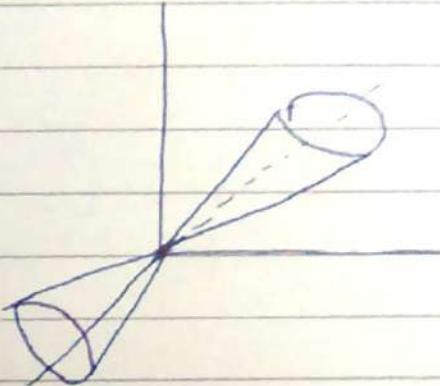
Hyperboloid of two sheets



$$\boxed{8}$$

$$x^2 = y^2 + z^2$$

elliptic cone



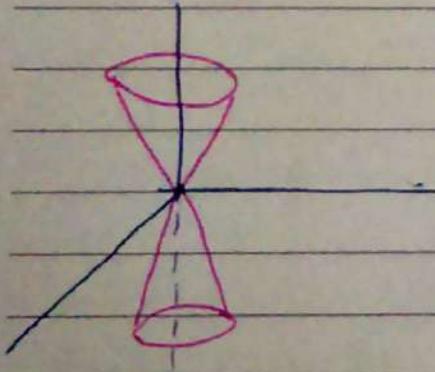
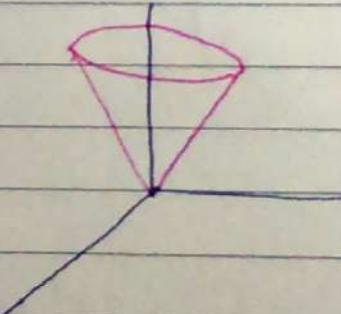
جسم مخروطي ينبع من مقطع ملائمه في مستوى الأصل

origin

$$\boxed{9} \quad z^2 = x^2 + y^2$$

$$\boxed{10} \quad \text{eq} \Rightarrow z^2 = x^2 + y^2$$

elliptic cone

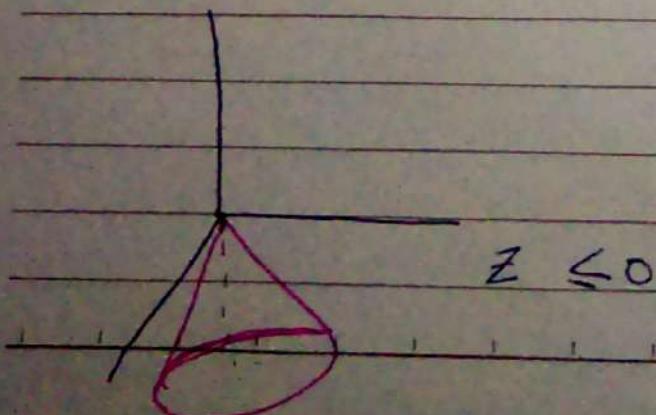
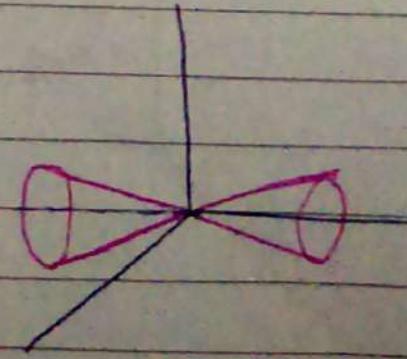


جسم مخروطي ينبع من مقطع ملائمه في مستوى الأصل

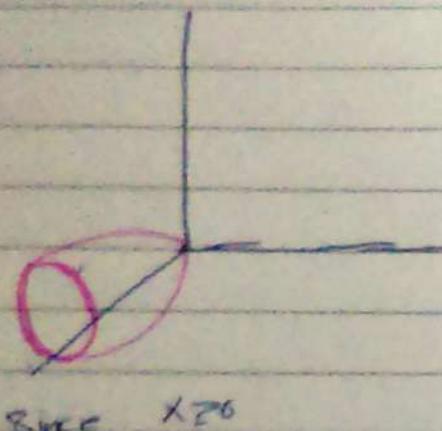
$$\boxed{11} \quad z = -\sqrt{x^2 + y^2}$$

elliptic cone

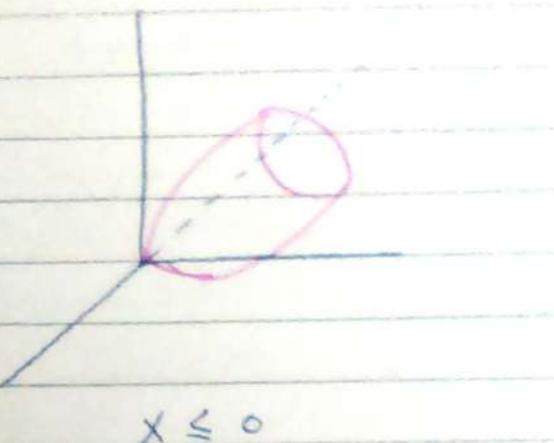
$$\boxed{12} \quad \text{elliptic cone}$$



13) $20x = y^2 + z^2$
elliptic paraboloid



14) $20x = -(y^2 + z^2)$
elliptic paraboloid



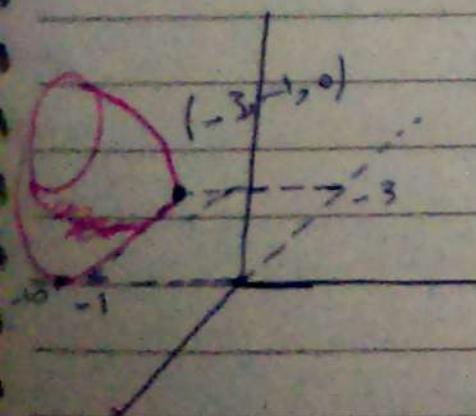
15) ~~*69~~

$$(x+3)^2 + y + z^2 = -10 + 9$$

$$y = -[(x+3)^2 + z^2] - 1 \Rightarrow$$

$$y + 1 = -[(x+3)^2 + z^2] \quad \text{Blaublau}$$

Elliptic paraboloid



$$-(y+1) = 9$$

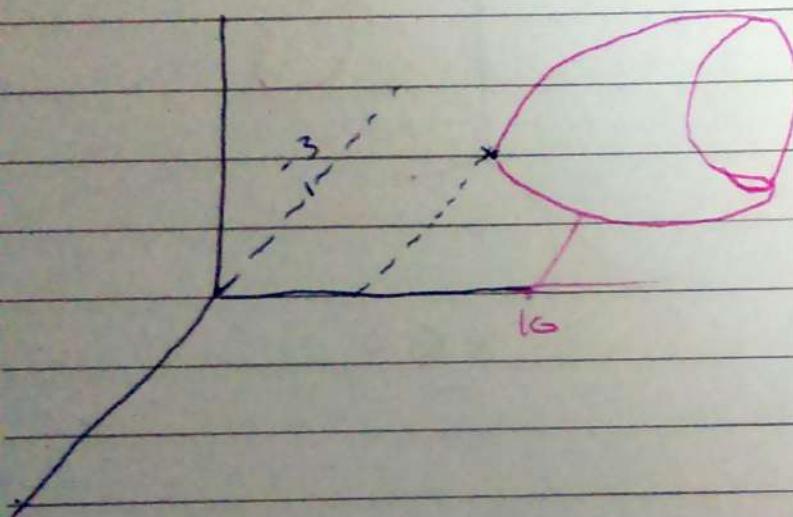
$$y = -10 \rightarrow y\text{-intercept}$$

16] $(x+3)^2 - y + z^2 = -10 + 9$

Elliptic paraboloid

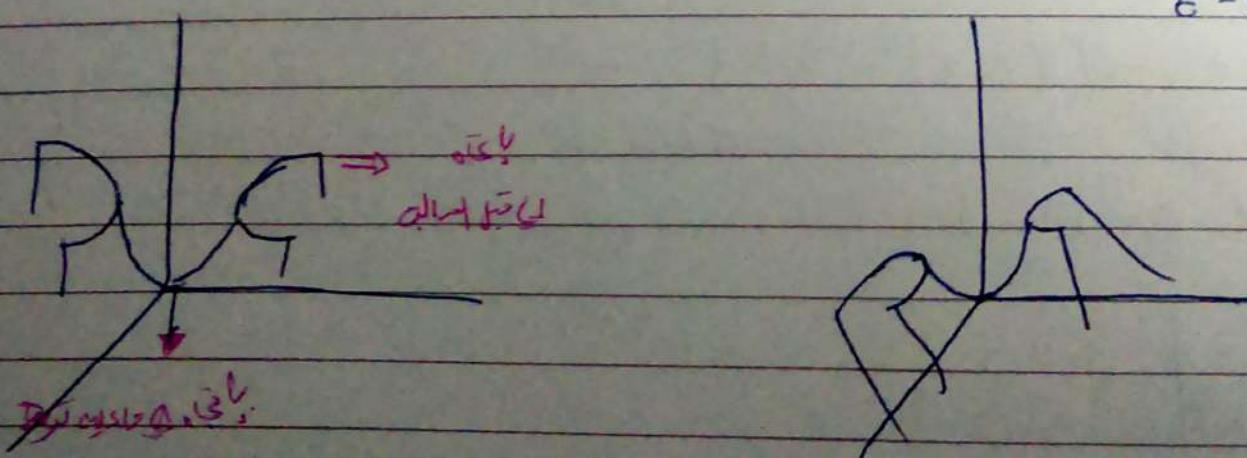
$$(x+3)^2 - y + z^2 = -1$$

$$y - 1 = (x+3)^2 + z^2$$



17] Hyperbolic paraboloid

$$z = x^2 - y^2$$



Ch. 14 " Partial Derivatives

Sec 14.1: Function of several variables

Example 8. $f(x, y) = \ln(y - \sqrt{x^2 + y^2})$

$$\begin{aligned} \text{Domain } (f) &= \left\{ (x, y) : y - \sqrt{x^2 + y^2} > 0 \right\} \\ &= \left\{ (x, y) : y > \sqrt{x^2 + y^2} \right\} \\ &\quad 1 > \sqrt{0^2 + 1^2} \end{aligned}$$

$$(0, 1) \notin \text{Dom}(f)$$

$$(3, 4) \notin \text{Dom}(f) \text{ since } 4 \not> \sqrt{3^2 + 4^2}$$

$$(0, 4) \notin \text{Dom}(f) \text{ since } 4 \not> \sqrt{0^2 + 4^2} = 4$$

Example 8. $f(x, y, z) = \frac{1}{x^2 - y^2 + z - 3}$

$$\text{Dom } (f) = \left\{ (x, y, z) : x^2 - y^2 + z - 3 \neq 0 \right\}$$

$$(1, 1, 3) \notin \text{Dom}(f) \text{ since } 1^2 - 1^2 + 3 - 3 = 0$$

$$(1, 1, 1) \in \text{Dom}(f) \text{ since } 1^2 - 1^2 + 1 - 3 = -2 \neq 0$$

$$f(1, 1, 1) = \frac{1}{-2} = -\frac{1}{2}$$

Example $\Rightarrow g(x, y) = \sqrt{x^2 - y^2}$

$$\text{Dom}(g) = \{(x, y) : x^2 - y^2 \geq 0\}$$

$(1, 2) \notin \text{Dom}$ since $1^2 - 2^2 = -3 \not\geq 0$

$(2, 1) \in \text{Dom}$ since $2^2 - 1^2 = 3 \geq 0$

Example $f(x, y) = \begin{cases} \sin(x^2 + y^2) & , x \neq 0 \\ 0 & , x = 0 \end{cases}$

$$\text{Dom}(f) = \{(x, y) : x, y \in \mathbb{R}\} = \mathbb{R}^2$$

$$f(1, -1) = 3 \quad \text{since } |1| = |-1|$$

$$f(3, 4) = \frac{\sin(3^2 + 4^2)}{3^2 + 4^2} = \frac{\sin(25)}{25}$$

Example $\Rightarrow g(x, y, z) = \sqrt{1 + x^2 + y^2 + z^2}$

$$\text{Dom}(g) = \{(x, y, z) : x, y, z \in \mathbb{R}\} = \mathbb{R}^3$$

$$f(1, -1, 3) = \sqrt{1 + 1^2 + (-1)^2 + 3^2} = \sqrt{7}$$

see 14.2 Limits and Continuity

A curve C in \mathbb{R}^3 (or \mathbb{R}^2) is given by $x = f(t)$,

$$y = g(t), \quad z = h(t), \quad t \in [a, b]$$

Apt. on C is $(P(t), g(t), h(t)) \rightarrow G \in [a, b]$

Example $C: x = t+1 \rightarrow y = t^2 - 2$

Curve in \mathbb{R}^2

$Z = t^2 - 2$

① $(1, -2)$ pt. on C when $t = 0$

② $(0, -1)$ pt. on C when $t = -1$

③ $(2, 2)$ not apt. on C because there is no t s.t.
 $t+1=2 \Rightarrow t=1$
 $t^2-2=2 \Rightarrow t=\pm 2$

Example $C: x = t \rightarrow y = t^2 \rightarrow Z = t+1$

Curve in $\mathbb{R}^3 \Rightarrow Z \in \mathbb{R}$

Defn: Let $C: x = f(t), y = g(t), Z = h(t)$ be curve
in \mathbb{R}^3 pass through apt. (x_0, y_0, z_0) when $t = t_0$

$\lim_{(x,y,z) \rightarrow (x_0, y_0, z_0)} F(x, y, z) = L$ exist $\Leftrightarrow \lim_{(x,y,z) \rightarrow (x_0, y_0, z_0)} F(x, y, z) = L$
 $L \in \mathbb{R}$ along any curve C

$\Leftrightarrow \lim_{t \rightarrow t_0} F(P(t), g(t), h(t))$

Also

$\lim_{(x,y,z) \rightarrow (x_0, y_0, z_0)} F(x, y, z) = \text{does not exist (DNE)}$
 $(x, y, z) \rightarrow (x_0, y_0, z_0)$

$\Leftrightarrow \lim_{\text{along } C} F(x, y, z) \neq \lim_{\text{along } C_2} F(x, y, z)$

C_1, C_2 curves pass (x_0, y_0, z_0)

Examples Find the limit if it exists

$$\text{III} \lim_{(x,y,z) \rightarrow (1,-1,2)} e^{-xyz} \cos(x-y)$$

$$\text{IV} \lim_{(x,y) \rightarrow (0,0)} \frac{x^4 + x^2y - 6y^2}{x^2 + 3y}$$

$$\text{V} \lim_{(x,y,z) \rightarrow (0,0,0)} \frac{\sin(2x^2 + 2y + z^2)}{2x^2 + 2y + z^2}$$

$$\text{VI} \lim_{(x,y) \rightarrow (0,0)} \frac{\tan(x^2y^2)}{x-y}$$

$$\text{VII} \lim_{(x,y) \rightarrow (0,0)} \frac{(2x-3y+1)^{13}-1}{(2x-3y-2)^{13}+8}$$

$$\text{VIII} \lim_{(x,y) \rightarrow (0,0)} \frac{x^4 - y^4}{x^2 + y^2}$$

$$\text{Sol 8} \lim_{(x,y,z) \rightarrow (1,-1,3)} e^{-xyz} \cos(x-y) = e^{-1(-1)(3)} \cos(1-(-1)) = e^3 \cos 2$$

مقدمة في المثلث *

$$\text{IX} \lim_{(x,y) \rightarrow (0,0)} \frac{x^4 + x^2y - 6y^2}{x^2 + 3y} = \frac{0}{0}$$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{(x^2 + 3y)(x^2 - 2y)}{x^2 + 3y} = \lim_{(x,y) \rightarrow (0,0)} (x^2 - 2y) = 0$$

$$\text{X} \lim_{(x,y,z) \rightarrow (0,0,0)} \frac{\sin(2x^2 + 2y + z^2)}{2x^2 + 2y + z^2} = \frac{0}{0}$$

$$w = 2x^2 + 2y + 2z \rightarrow \text{when } (x, y, z) \rightarrow (0, 0, 0)$$

Then $w \rightarrow 0$

$$\Rightarrow \lim_{w \rightarrow 0} \frac{\sin w}{w} = 1$$

$$[4] \lim_{(x,y) \rightarrow (0,0)} \frac{\tan(x^2 - y^2)}{x-y} = \underline{\underline{0}}$$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{\tan(x^2 - y^2)}{x-y} = \lim_{(x,y) \rightarrow (0,0)} \frac{\tan(x^2 - y^2)}{x^2 - y^2} \cdot \frac{(x+y)}{(x+y)} = 1 \cdot 0 = \underline{\underline{0}}$$

$$[5] \lim_{(x,y) \rightarrow (0,0)} \frac{(2x-3y+1)^{1/3}-1}{(2x-3y-2)^{1/3}+8} = \frac{\underline{\underline{0}}}{(-2)^{1/3}+8} = \underline{\underline{0}}$$

$$[6] \lim_{(x,y) \rightarrow (0,0)} \frac{x^4 - y^4}{x^2 + y^2} = \frac{\underline{\underline{0}}}{\underline{\underline{0}}} \lim_{(x,y) \rightarrow (0,0)} \frac{(x^2 - y^2)(x^2 + y^2)}{(x^2 + y^2)} = \underline{\underline{0}}$$

$$[7] \lim_{(x,y) \rightarrow (1,-1)} \frac{(2x+y)^5 - 1}{(4x+2y)^5 - 32} = \underline{\underline{0}}$$

$$\lim_{(x,y) \rightarrow (1,-1)} \frac{(2x+y)^5 - 1}{(2(2x+y)^5) - 32} \stackrel{1}{=} \frac{(2x+y)^5 - 1}{32[(2x+y)^5 - 1]} \stackrel{2}{\rightarrow} \frac{1}{32} \rightarrow$$

$$\stackrel{3}{=} w = 2x+y \Leftrightarrow (x,y) \rightarrow (1,-1) \Rightarrow w \rightarrow 1$$

$$\lim_{w \rightarrow 1} \frac{w^5 - 1}{(2w)^5 - 32} = \lim_{w \rightarrow 1} \frac{5w^4}{5(2w^4)(2)} = \frac{1}{2^5} = \frac{1}{32}$$

جواب مذکور
لما $w \rightarrow 1$

$$\text{Ex) } \lim_{(x,y) \rightarrow (0,0)} \frac{x^4 + y^4}{x^2 + y^2}$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$x^2 + y^2 = r^2$$

$$(x,y) \rightarrow (0,0)$$

$$r \rightarrow 0^+$$

$$\lim_{r \rightarrow 0^+} r^4 (\cos^4 \theta + \sin^4 \theta)$$

$$\text{Ex) } = \lim_{r \rightarrow 0^+} r^4 (\cos^4 \theta + \sin^4 \theta)$$

$$= \lim_{r \rightarrow 0^+} r^2 (\cos^4 \theta + \sin^4 \theta) = \boxed{0}$$

Example 2) Find the limit if it exist.

$$\text{Ex) } \lim_{(x,y) \rightarrow (0,0)} \frac{x^2 + \sin^2(2y)}{2x^2 + y^2} = (0,0)$$

C₁ : $x = t \rightarrow y = 0$ pass $(0,0)$ when $t = 0$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{x^2 + \sin^2(2y)}{2x^2 + y^2} = \lim_{t \rightarrow 0} \frac{t^2 + \sin^2(0)}{2t^2 + 0^2} = \boxed{\frac{1}{2}}$$

C₂ : $x = 0 \rightarrow y = t$ pass $(0,0)$ when $t = 0$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{x^2 + \sin^2(2y)}{2x^2 + y^2} = \lim_{t \rightarrow 0} \frac{\sin^2(2t)}{t^2} = 4$$

$\therefore \lim_{\text{along C1}} f = \lim_{\text{along C2}} f \therefore$ the limit exists.

C₁ : $x = t+1 \rightarrow y = 0$ pass ~~$(1,0)$ when~~

$$\begin{aligned} \text{2) } \lim_{(x,y) \rightarrow (1,0)} \frac{x^2 - 2x + 1 - y^2}{(x-1)^2 + y^2} &= \lim_{t \rightarrow 0} \frac{(t+1)^2 - 2(t+1) + 1 - 0}{(t+1-1)^2 + 0} \\ &= \lim_{t \rightarrow 0} \frac{2(t+1) - 2}{2t} = \boxed{1} \end{aligned}$$

C2: $x = t$, $y = t$ pass $(1, 0)$ when $t = 0$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{x^2 - 2x + 1 - y^2}{(x-1)^2 + y^2} = \lim_{t \rightarrow 0} \frac{-t^2}{t^2} = -1 \quad \therefore \text{the limit does not exist}$$

3] $\lim_{(x,y,z) \rightarrow (0,0,0)} \frac{yz}{x^2 + 4y^2 + 9z^2} = 0$

C1: $x = t$, $y = 0$, $z = 0$ pass $(0,0,0)$ when $t = 0$

$$\lim_{\text{along C1}} f = \lim_{t \rightarrow 0} \frac{0}{t^2} = 0$$

C2: $x = 0$, $y = t$, $z = 0$ pass $(0,0,0)$ when $t = 0$

$$\lim_{\text{along C2}} f = \lim_{t \rightarrow 0} \frac{6^2}{13t^2} = \frac{1}{13} \quad \therefore \text{the limit does not exist}$$

4] $\lim_{(x,y) \rightarrow (0,0)} \frac{x^{\frac{2}{3}} y^2}{x^2 + y^2}$ let $x = r \cos \theta$

$$y = r \sin \theta \quad \text{then } r = \sqrt{x^2 + y^2}$$

$$\lim_{r \rightarrow 0} \frac{r^{\frac{2}{3}} (\cos^{\frac{2}{3}} \theta \cdot r^2 \sin^2 \theta)}{r^2 (1)} = 0$$

5] $\lim_{(x,y) \rightarrow (0,0)} \frac{x^{\frac{2}{3}} y^2}{x^2 + y^2}$

C1: $x = t$, $y = 0$ pass $(0,0)$ when $t \rightarrow 0$

$$\lim_{\text{along C1}} f = \lim_{t \rightarrow 0} \frac{0}{t^2} = 0$$

C2: $x = t^3$, $y = t^2$ pass $(0,0)$ when $t \rightarrow 0$

$$\lim_{\text{along } C_2} f = \lim_{t \rightarrow 0} \frac{t^2}{2t^2} = \frac{1}{2}$$

\therefore the limit \exists n.e

$$\boxed{7} \lim_{(x,y,z) \rightarrow (0,0,1)} \frac{xy^2 + y^2z - y^2}{x^2 + y^4 + (z-1)^2}$$

$C_1: x=t \rightarrow y \neq 0, z=1$ pass $(0,0,1)$ when $t \neq 0$

$$\lim_{\text{along } C_1} f = \lim_{t \rightarrow 0} \frac{0}{t^2} = 0$$

$C_2: x=t^2 \rightarrow y=t, z=6^3+1$ pass $(0,0,1)$ when $t \neq 0$

$$\lim_{\text{along } C_2} f = \lim_{t \rightarrow 0} \frac{t^4 + t^2(6^2+1) - 6^2}{3t^4} = \lim_{t \rightarrow 0} \frac{2t^4}{3t^4} = \boxed{\frac{2}{3}}$$

\therefore The limit \exists n.e \neq

Def s

A function $f(x,y)$ ~~is~~ is Conts at $(a,b) \in \text{Dom}(f)$

if $\lim_{(x,y) \rightarrow (a,b)} f = f(a,b)$

Example

① $f(x,y) = \frac{x^2 + y^2}{x^2 + y^2 + 1}$ is Conts on \mathbb{R}^2

$$2) g(x, y, z) = \frac{x^2 y^2}{e^{x^2 y^2}} \text{ conts on } \mathbb{R}^3$$

$$3) h(x, y) = \frac{1}{x-y} \text{ cont on } \mathbb{R}^2 - \{(x, x) : x \in \mathbb{R}\}$$

$$4) f(x, y) = \frac{\sqrt{y-x^2}}{|x|} \text{ cont on } \{(x, y) : y-x^2 \geq 0\}$$

$$\text{Example: find a S. f}(x,y) = \begin{cases} \frac{xy^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ -1, & (x,y) = (0,0) \end{cases}, (xy) = (0,0)$$

Counts at $(0,0)$.

$$\text{Sol: } \lim_{(x,y) \rightarrow (0,0)} f = f(0,0)$$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{xy^2 - y^2}{x^2 + y^2} = -1$$

$$c: x=t \rightarrow y=0 \text{ Pass } (0,0) \text{ when } t=0$$

$$\lim_{t \rightarrow 0} \frac{xy^2 - y^2}{x^2 + y^2} = -1$$

$$\lim_{t \rightarrow 0} \frac{at^2 - t^2}{t^2} = -1 \Rightarrow a = -1$$

See 14.3: Partial Derivatives

The Partial derivative of $z = f(x,y)$ with respect to (w.r.t.)

$$\textcircled{1} x \text{ at } (a,b) \text{ is } f_{xx}(a,b) = \lim_{x \rightarrow a} \frac{f(x,b) - f(a,b)}{x - a}$$

$$f_x(a,b) = \frac{\partial f}{\partial x}(a,b) = \lim_{x \rightarrow a} \frac{f(x,b) - f(a,b)}{x - a}$$

$$f_x(a,b) = \lim_{h \rightarrow 0} \frac{f(a+h,b) - f(a,b)}{h}$$

$$(2) \text{ at } (a, b) \text{ is } f_y(a, b) = \lim_{y \rightarrow b} \frac{f(a, y) - f(a, b)}{y - b}$$

$$f_y(a, b) = \frac{\partial f}{\partial y} \Big|_{(a, b)} = z_y \Big|_{(a, b)} = \frac{\partial f}{\partial y} \Big|_{(a, b)}$$

Example 3) If $z = \sin \left(\frac{x}{1+y^2} \right)$, then

$$(1) \frac{\partial z}{\partial x} = \cos \left(\frac{x}{1+y^2} \right) \cdot \left(\frac{1}{1+y^2} \right)$$

$$(2) z_y = \cos \left(\frac{x}{1+y^2} \right) \cdot \frac{-x(2y)}{(1+y^2)^2}$$

$$(3) z_y \Big|_{(1, -1)} = \cos \left(\frac{1}{2} \right) \left(\frac{2}{4} \right) = \frac{1}{2} \cos \frac{1}{2}$$

$$\text{Example 3) let } f(x, y, z) = x^3 + e^{2xz} + \ln(xy)$$

$$\text{Find } f_x(1, 1, 2) + 3 f_y(1, 1, 2) - 3 f_z(1, 1, 2) = ?$$

$$\text{Sol 3) } f_x = 3x^2 + 2ze^{2xz} + \frac{y}{xy}$$

$$f_x(1, 1, 2) = 3 + 4e^4 + 1 = 4 + 4e^4$$

$$f_y = 0 + 0 + \frac{x}{xy}$$

$$f_y(1, 1, 2) = 1$$

$$f_2 = 0 + 2x e^{2x^2} + 0$$

$$f_2 = (0+0) + 2e^4$$

$$\omega = 4 + 4e^4 + 3(1) - 3(2e^4)$$

Example 2 Find $f_x(0,0)$, $f_y(0,0)$ if it exist where

$$f(x,y) = (x^3 - y^3)^{2/3}$$

$$f(x) = \frac{2}{3} (x^3 - y^3)^{-\frac{1}{3}} (3x^2)$$

$$= -\frac{2x^2}{(x^3 - y^3)^{\frac{1}{3}}} = \left(\frac{0}{0} \right) \text{ using } \frac{0}{0} \text{ rule}$$

$$f_x(0,0) = \lim_{x \rightarrow 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \rightarrow 0} \frac{(x^3)^{\frac{2}{3}} - 0}{x - 0}$$

$$= \lim_{x \rightarrow 0} \frac{x^2}{x} = \boxed{0}$$

~~$$f_y(0,0) = \lim_{y \rightarrow 0} \frac{f(0,y) - f(0,0)}{y - 0} = \lim_{y \rightarrow 0} \frac{(-y^3)^{\frac{2}{3}} - 0}{y}$$~~

$$= \lim_{y \rightarrow 0} \frac{y^2}{y} = 0$$

Example 3 Find $f_x(0,0)$, $f_y(0,0)$ where $f(x,y) = \sqrt{x^2 + y^2}$

~~$$f(x) = \frac{2x}{2 \sqrt{x^2 + y^2}}$$~~

~~$$f_x(0,0) = \frac{0}{0} \times$$~~

$$f(0,0) = \lim_{x \rightarrow 0} \frac{f(x,0) - f(0,0)}{x-0} = \lim_{x \rightarrow 0} \frac{\sqrt{x^2} - 0}{x}$$

$$= \lim_{x \rightarrow 0} \frac{|x|}{x}$$

لـ 48

$$\begin{aligned} & \text{لـ 48} \\ & \lim_{x \rightarrow 0^+} \frac{x}{x} = 1 \\ & \lim_{x \rightarrow 0^-} \frac{-x}{x} = -1 \end{aligned} \quad \left. \begin{array}{l} \text{لـ 48} \\ \text{لـ 48} \end{array} \right\} \lim_{x \rightarrow 0} \frac{|x|}{x} \quad \text{DNE}$$

$f(0,0)$ DNE

$$f_y(0,0) = \dots = \boxed{0}$$

Exercise 8: Find $f_x(0,0)$, $f_y(0,0)$ when $f(x,y) = (x^3 - y^3)^{1/3}$

$$\text{Remark 8: } f_{xx} = (f_x)_x = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$f_{xy} = (f_x)_y \quad (y) \text{ لـ 48} \quad (x) \rightarrow \text{أول حزنة سمتية} *$$

$$f_{yx} = (f_y)_x = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 z}{\partial x \partial y}$$

$$f_{yy} = (f_y)_y = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$$

$$f_{xxx} = \frac{\partial^6 f}{\partial x^6}$$

$$\frac{\partial^6 f}{\partial x \partial z \partial x \partial y \partial z \partial x^2}$$

Example 8. Find $F_{x,y,z}$ if $f(x,y,z) = 8 \sin(3x+yz)$

$$F_x = \cancel{3} \cos(3x+yz) \quad 3 \cos(3x+yz)$$

$$F_{xx} = -9 \sin(3x+yz)$$

$$F_{xy} = -9z \cos(3x+yz)$$

$$F_{x,y,z} = -9z (-y \sin(3x+yz)) + -9 \cos(3x+yz)$$

$$= 9yz \sin(3x+yz) - 9 \cos(3x+yz)$$

Thm 8. Let $f(x,y)$ be defined on a disk "D" that contains apt. (a,b) . If f_{xy}, f_{yx} cont. on D then $f_{xy}(a,b) = f_{yx}(a,b)$

$$* f_{xxy} = f_{xxx} \quad f_{yy} \quad \left. \begin{array}{l} \text{प्रमाणित} \\ \text{उम्मीद} \end{array} \right\}$$

Example 8) $\frac{\partial^2}{\partial y^2} x e^{xy}$

Sol 8) $\frac{\partial^2}{\partial x^2} x e^{xy} \Rightarrow$

$$= \frac{\partial^2}{\partial x^2} x^{71} e^{xy}$$

$$y \rightarrow \infty \quad \left. \begin{array}{l} x e^{xy} \\ x^2 e^{xy} \\ x^3 e^{xy} \\ \vdots \\ x^{71} e^{xy} \end{array} \right\}$$

$$= \frac{\partial}{\partial x} \left[y x^{71} e^{xy} + 71 x^{70} e^{xy} \right]$$

$$= \frac{\partial}{\partial x} \left[(x^{71} y + 71 x^{70}) e^{xy} \right]$$

$$= (x^{71}y + 71x^{70})ye^{xy} \rightarrow e^{xy} (71x^{70}y + (71)(70)x^{69})$$

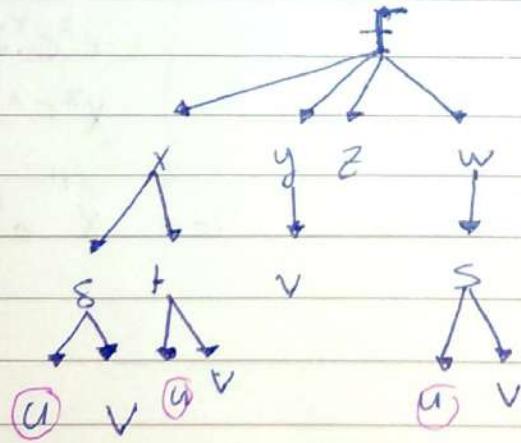
$$\left. \frac{\partial^2 xe^{xy}}{\partial x^2 \partial y} \right|_{(1,0)} = 6 + 1 (70(71))$$

Exercise 8. Find $\frac{\partial^{100} f}{\partial y^{40} \partial x^{60}}$ where $f(x, y) = x \sin y + y^{100}$

See 145 - The Chain Rule

let $f(x, y, z, w)$, $x = x(s, t)$, $y = y(v)$, $w = w(s)$
 $s, t \in \mathbb{R}$, $v \in \mathbb{R}$, $x \in \mathbb{R}$

$$s = s(u, v), t = t(u, v)$$



$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} \frac{\partial s}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \frac{\partial t}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial v} \frac{\partial v}{\partial u} + \frac{\partial f}{\partial w} \frac{\partial w}{\partial v} \frac{\partial v}{\partial u}$$

$$\frac{\partial f}{\partial u} = f_x \cdot x_s \cdot s_u + f_x \cdot x_t \cdot t_u + f_w \cdot w_v \cdot v_u$$

because $w \rightarrow v \rightarrow u$ \Rightarrow $w_u = v_u = 38$

$$\frac{\partial f}{\partial v} = f_x \cdot x_s \cdot s_v + f_x \cdot x_t \cdot t_v + f_y \cdot \frac{\partial y}{\partial v} + f_w \cdot \frac{\partial w}{\partial v} \cdot s_v$$

$$x_u = x_s \cdot s_u + x_t \cdot t_u$$

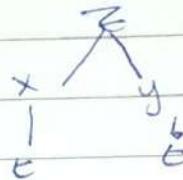
$$f_s = f_x \cdot x_s + f_w \cdot \frac{\partial w}{\partial s}$$

Example: let $z = x^2y + 3xy^2$

$$x = 8\sin 2t$$

$$y = \cos 2t$$

$$\text{Find } \frac{\partial z}{\partial t} \Big|_{t=0}$$



$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

$$= (2xy + 3y^2)(2\cos 2t) \Big|_{t=0} + (y^2 + 6xy)(-2\sin 2t) \Big|_{t=0}$$

$$x \Big|_{t=0} = 8\sin[2(0)] = 0$$

$$y \Big|_{t=0} = \cos[2(0)] = 1$$

$$\begin{aligned} \frac{\partial z}{\partial t} &= (2(0)(1) + 3(1)^2)(2 \cos 2(0)) + (0^2 + 6(0)(1))(-2\sin 2(0)) \\ &= 6 \end{aligned}$$

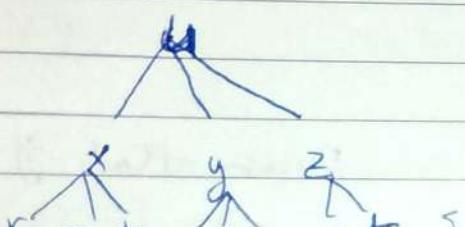
Example If $u = x^4 + y^2 z^3$

$$x = rs e^t$$

$$y = rs^2 e^{-t}$$

$$z = r^2 \sin t$$

Find $\frac{\partial u}{\partial s}$, $\frac{\partial u}{\partial t}$ when $r=2$, $s=1$, $t=0$



$$x| = 2(1)e^0 = 2$$

$$\begin{matrix} r=2 \\ s=1 \\ t=0 \end{matrix}$$

$$y| = 2(1)^2(1) = 2$$

$$\begin{matrix} r=2 \\ s=1 \\ t=0 \end{matrix}$$

$$z| = 0$$

$$\begin{matrix} r=2 \\ s=1 \\ t=0 \end{matrix}$$

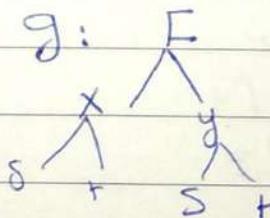
$$\frac{\partial u}{\partial s} = u_x \cdot x_s + u_y \cdot y_s$$

$$= 4x^3 r e^t + 2y z^3 2 r s e^t$$

$$= 4(2)^3 \cdot 2 \cdot e^0 + 2(2)(0)(2)(2)e^0$$

$$= 64$$

$$\frac{\partial u}{\partial t} = u_x \cdot x_t + u_y \cdot y_t + u_z \cdot z_t$$



Example If $g(s, t) = f(s^2 - t^2, t^2 - s^2)$ show that

$$\frac{\partial g}{\partial s} + s \frac{\partial g}{\partial t} = 0$$

$$\text{Solve } f(x, y), \quad x = s^2 - t^2$$

$$y = t^2 - s^2$$

(a) The line $x - 2y - 2z = -3$ is the line $L: x = -1 + t, y = 2 - s, z = s$.

4) The line o
(a) r
(c) r

If the v
the con:
(a) $a =$

$$t \frac{\partial g}{\partial s} + s \frac{\partial g}{\partial t} = t (f_x \cdot x_s + f_y \cdot y_s) + s (f_x \cdot x_t + f_y \cdot y_t)$$

$$= t (f_x \cdot 2s + f_y \cdot -2s) + s (f_x \cdot -2t + f_y \cdot 2t)$$

$$= 2st f_x - 2st f_y - 2st f_x + 2st f_y$$

$$= 0$$

Example: Let $Z = f(x^2 - y^2)$ Prove that $yZ_x + xZ_y = 0$

pf: $Z = f(t) \rightarrow t = x^2 - y^2$

$$Z = F$$

$$yZ_x + xZ_y = y f'(t) \cdot t_x + x f'(t) b_y$$

$$= y f'(t) 2x + x f'(t) 2y$$

$$= 2xyf' - 2xyf'$$

$$= 0$$

The implicit function theorem (IFT)

If the eq. $f(x, y, z) = 0$ defines implicitly a func. Z in the terms of x, y , then $\frac{\partial z}{\partial x} = -\frac{f_x}{f_z}$

$$\frac{\partial z}{\partial y} = -\frac{f_y}{f_z}$$

Example: Find $\frac{dy}{dx}$ if $\frac{x^3 + y^3}{6xy} = 1$

Using the IFT

$$\text{Sol } \text{8, } \frac{x^3 + y^3}{6xy} = 1$$

$$x^3 + y^3 = 6xy$$

$$\underbrace{x^3 + y^3 - 6xy = 0}_{F(x,y)} \Rightarrow \text{partial derivative} = 0$$

$$\frac{dy}{dx} = \frac{-Fx}{Fy} = -\frac{3x^2 - 6y}{3y^2 - 6x}$$

Example 8 Find zx, zy using the IFT, where

$$\frac{x^3y^3 + z^3 - 1}{1 - 6xyz} = 0$$

$$\frac{x^3y^3 + z^3}{1 - 6xyz} = 1 \Rightarrow x^3y^3 + z^3 = 1 - 6xyz$$

$$\Rightarrow \underbrace{x^3y^3 + z^3 - 1 + 6xyz}_{F(x,y,z) = 0} = 0$$

$$zx = \frac{-Fx}{Fz} = -\frac{(3x^2y^3 + 6yz)}{3z^2 + 6xy}$$

$$zy = \frac{-Fy}{Fz} = -\frac{(3y^2x^3 + 6xz)}{3z^2 + 6xy}$$

$$\frac{\partial x}{\partial y} = \frac{-Fy}{Fx} = \frac{-3y^2x^3 + 6xz}{3x^2y^3 + 6yz}$$

$$\frac{\partial x}{\partial z} = \frac{-Fz}{Fx} = -\frac{(3z^2 + 6xy)}{3x^2y^3 + 6yz}$$

Sec 14.6 The Directional Derivative and the Gradient Vector

Def: the gradient vector of a func $f(x, y, z)$ is

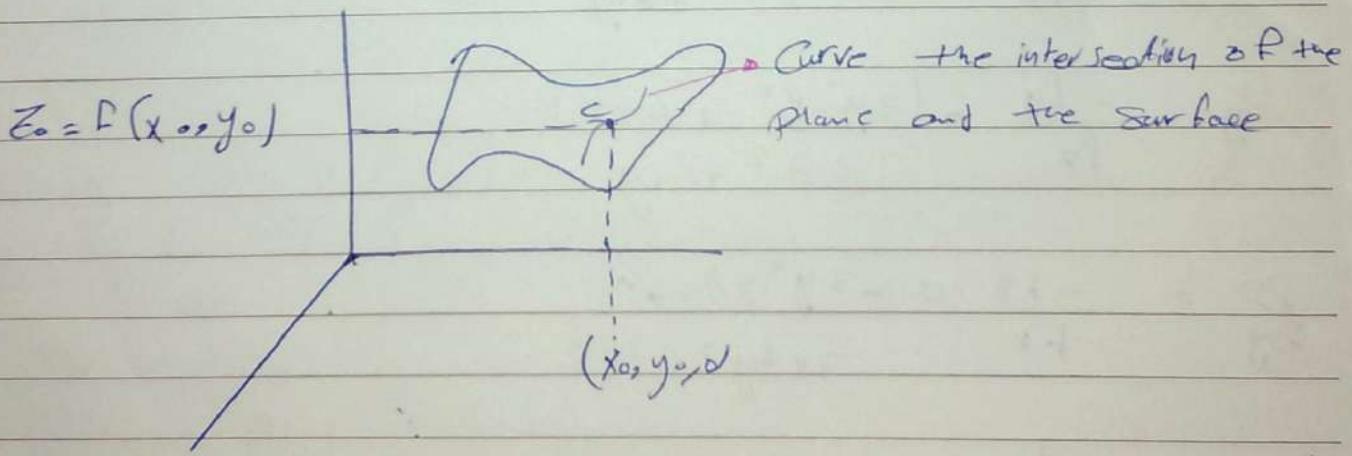
$$\nabla f(x, y, z) = \langle f_x, f_y, f_z \rangle \\ = \langle f_{x_i}, f_{y_j}, f_{z_k} \rangle$$

* $f(x, y) \Rightarrow \nabla f = \langle f_x, f_y \rangle$

Def: the directional Derivative of the function $f(x, y)$ at a point (x_0, y_0) in the direction of unit vector $\hat{u} = \langle a, b \rangle$ is

$$D_{\hat{u}} f(x_0, y_0) = \lim_{h \rightarrow 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

* Geometric Interpretation (using \hat{u})



plane P pass (x_0, y_0, z_0) , $(x_0, y_0, 0)$ and parallel to \hat{u}

$D_{\hat{u}} f(x_0, y_0)$ = slope of the tangent line to $\overset{\text{curve}}{f}$
where tangent lies in the plane P)

$$\text{Thm} \Rightarrow D_{\hat{u}} f(x, y) = \nabla f \cdot \hat{u}$$

Example: Find the directional derivative of $f(x, y, z) = x \sin(yz)$ at the pt. A(1, 3, 0) in the direction of

$$\vec{v} = \hat{i} + 2\hat{j} - \hat{k}$$

$$\begin{aligned} \text{Sol: } \nabla f &= \langle f_x, f_y, f_z \rangle \\ &= \langle \sin(yz) + xz \cos(yz), x \cos(yz), xy \cos(yz) \rangle \end{aligned}$$

$$\nabla f(1, 3, 0) = \langle 0, 0, 3 \rangle$$

$$|\vec{v}| = \sqrt{6} \neq 1 \Rightarrow \hat{v} = \left\langle \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}} \right\rangle$$

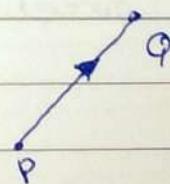
$$D_{\hat{v}} f(1, 3, 0) = \langle 0, 0, 3 \rangle \cdot \left\langle \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}} \right\rangle$$

Remark: $D_{\hat{u}} f(x_0, y_0) = \text{rate of change of } f(x, y) \text{ at the pt. } (x_0, y_0) \text{ in the direction of } \hat{u}$

Example: Find the rate of change of $f(x, y) = xe^y$ at the pt. (2, 0) in the direction from P to Q $(\frac{1}{2}, 2)$

$$\text{Sol: } \vec{u} = \vec{PQ} = \left\langle -\frac{3}{2}, 2 \right\rangle$$

$$|\vec{u}| = \sqrt{\frac{9}{4} + 4} = \sqrt{\frac{25}{4}} = \frac{5}{2}$$



$$\hat{u} = \left\langle -\frac{3}{5}, \frac{4}{5} \right\rangle$$

$$\nabla f = \langle f_x, f_y \rangle = \langle e^y, xe^y \rangle$$

$$\nabla f(2, 0) = \langle 1, 2 \rangle$$

$$S_1: z = x^2 + y^2 \text{ and } S_2: z = 5$$

$$\text{rate of change} = D_{\hat{u}} f(2,0) = \nabla f(2,0) \cdot \hat{u}$$
$$= \frac{-3}{5} + \frac{8}{5} = \boxed{1}$$

Remark: The max. value of $D_{\hat{u}} f(x_0, y_0)$ (max. rate of change) is in the direction of $\hat{u} = \frac{\nabla f(x_0, y_0)}{|\nabla f(x_0, y_0)|}$ is $|\nabla f(x_0, y_0)|$

The min. value of $D_{\hat{u}} f(x_0, y_0)$ (min. rate of change) is $-|\nabla f|$ and holds in the direction of $\hat{u} = \frac{-\nabla f}{|\nabla f|}$

Example: If $f(x,y) = x e^y$

(1) Find the max. rate of change of f at the pt. $(2,0)$.
In what direction does f has this max. value

(2) find the min. rate of change of f at the pt. $(2,0)$.
In what direction does f has this min. value.

$$\text{Sol: } \nabla f = \langle f_x, f_y \rangle = \langle e^y, x e^y \rangle$$
$$\nabla f(2,0) = \langle e^0, 2e^0 \rangle = \langle 1, 2 \rangle$$

(1) max. rate of change = max $D_{\hat{u}} f(2,0) = |\nabla f(2,0)| = \sqrt{5}$
in the direction of $\hat{u} = \frac{\nabla f(2,0)}{|\nabla f(2,0)|} = \frac{\langle 1, 2 \rangle}{\sqrt{5}} = \langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle$

(2) min. rate of change = min $D_{\hat{u}} f(2,0) = -|\nabla f(2,0)|$
 $= -\sqrt{5}$

in the direction of $\hat{u} = \frac{-\nabla f(2,0)}{|\nabla f(2,0)|} = \frac{-\langle 1, 2 \rangle}{\sqrt{5}} = \langle -\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}} \rangle$

Example 8) Find unit vector \hat{u} s.t $\nabla f(x_0, y_0) = 3i - 4j$

$$D_{\hat{u}} f(x_0, y_0) = -5$$

$$\text{Sol: } |\nabla f(x_0, y_0)| = \sqrt{25} = 5$$

$$D_{\hat{u}} f(x_0, y_0) = -5 = -|\nabla f(x_0, y_0)|$$

$$\Rightarrow \hat{u} = \frac{-\nabla f(x_0, y_0)}{|\nabla f(x_0, y_0)|} = \frac{-3i - 4j}{5} = \frac{-3i}{5} + \frac{4j}{5}$$

Example 8) Let $\hat{u} = \frac{3}{5}i - \frac{4}{5}j$

$$v = \frac{4}{5}i + \frac{3}{5}j$$

$$D_{\hat{u}} f(1, 2) = -5$$

$$D_v f(1, 2) = 10$$

Fact: $\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle$

② Find the direction derivative of f at $(1, 2)$ in the direction that makes the angle $\theta = \frac{\pi}{2}$

$$\text{Sol: } \nabla f(1, 2) = \langle a, b \rangle$$

$$D_{\hat{u}} f(1, 2) = -5 \Rightarrow \nabla f(1, 2) \cdot \hat{u} = -5$$

$$\frac{3a}{5} - \frac{4b}{5} = -5$$

$$3a - 4b = -25 \quad \boxed{1}$$

intersection of the traces of the surfaces S_1 and S_2 in the

$$\begin{array}{l} 2a + 3b = 10 \\ 2b = 1 \end{array}$$

$$D\vec{v} f(1,2) = 10 \Rightarrow \nabla f(1,2) \cdot \vec{v} = 10$$

$$\frac{4a}{5} + \frac{3}{5}b = 10$$

$$\boxed{4a + 3b = 50} \rightarrow (2)$$

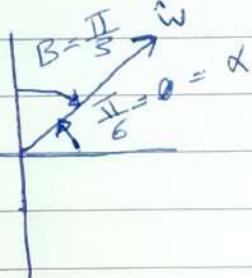
$$\begin{aligned} 3(1) + 4(2) &\Rightarrow 25a = 125 \Rightarrow \boxed{a = 5} \\ 3b &= 30 \Rightarrow \boxed{b = 10} \end{aligned}$$

$$\nabla f = \langle 5, 10 \rangle = \langle f_x(1,2), f_y(1,2) \rangle$$

$$\therefore f_x(1,2) = 5$$

$$\therefore f_y(1,2) = 10$$

2



\hat{w} direction

\Rightarrow direction angles of \hat{w} are $\alpha = \frac{\pi}{6}$, $B = \frac{\pi}{3}$,

$$\hat{w} = \langle \cos \alpha, \cos B \rangle$$

$$= \langle \cos \frac{\pi}{6}, \cos \frac{\pi}{3} \rangle$$

$$= \langle \frac{\sqrt{3}}{2}, \frac{1}{2} \rangle$$

$$D_{\hat{w}} f(1,2) = \nabla f(1,2) \cdot \hat{w}$$

$$= \langle 5, 10 \rangle \cdot \langle \frac{\sqrt{3}}{2}, \frac{1}{2} \rangle$$

$$= \frac{5\sqrt{3}}{2} + \frac{10}{2}$$

Remark 8)

$$D_i^f(x_0, y_0, z_0) = f_x(x_0, y_0, z_0)$$

$$D_j^f(x_0, y_0, z_0) = f_y(x_0, y_0, z_0)$$

$$D_k^f(x_0, y_0, z_0) = f_z(x_0, y_0, z_0)$$

Example

$$D_i^f(1, 2) = -5$$

$$D_j^f(1, 2) = 10$$

① find $f_x(1, 2)$, $f_y(1, 2)$

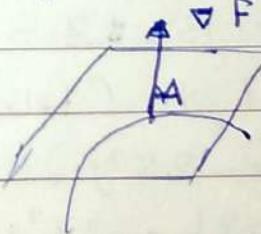
② find the direction derivative of f at $(1, 2)$ in the direction that makes the angle $\theta = \frac{\pi}{6}$

Since $D_i^f(1, 2) = -5 \Rightarrow f_x(1, 2) = -5$ from
 $D_j^f(1, 2) = 10 \Rightarrow f_y(1, 2) = 10$ using
 \hat{e}_j and \hat{e}_i are perpendicular

Rule 2: Let S is the surface $F(x, y, z) = 0$

at $A(x_0, y_0, z_0)$ is a pt on S

① $\nabla f(x_0, y_0, z_0)$ is normal to the tangent plane to S at A



eq of tangent plane is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$\nabla f(x_0, y_0, z_0) = \langle a, b, c \rangle$$

② A line L is normal to the tangent plane to S at A

\Leftrightarrow param. eqs. of L ::

$$x = x_0 + at$$

$$y = y_0 + bt$$

$$z = z_0 + ct$$

Example: Find the eqs. of the tangent plane and param. eqs. of the normal line to the surface $\frac{x^2}{4} + y^2 = 3 - \frac{z^2}{9}$

at the pt. $(-2, 1, -3)$

$$\text{Sol: } f(x, y, z) = \frac{x^2}{4} + y^2 - 3 + \frac{z^2}{9}$$

$$\nabla f = \left\langle \frac{2x}{4}, 2y, \frac{2z}{9} \right\rangle$$

$$\nabla f(-2, 1, -3) = \left\langle -1, 2, -\frac{2}{3} \right\rangle$$

$$\text{tangent plane: } -1(x + 2) + 2(y - 1) + \frac{-2}{3}(z + 3) = 0$$

$$\text{param. eqs. Normal line: } x = -2 - t$$

$$y = 1 + 2t$$

$$z = -3 - \frac{2}{3}t$$

Example: Find the param. eqs. of the line through the pt. $A(1, 1, 1)$ and parallel to the normal line of the surface $z = 2x^2y + 3xy^2$ at the pt. $B(1, 1)$

$$\text{at } B: z = 2(1)^2(1) + 3(1)(1)^2 = 5$$

at B

Tangent pt. $(1, 1, 5)$ #

$$\text{surface: } 2x^2y + 3xy^2 - z = 0$$

$$f(x, y, z) = 2x^2y + 3xy^2 - z$$

$$\nabla f = \left\langle \cancel{4xy^2 + 6x^2y}, 4xy + 3y^2, 2x^2 + 6xy, -1 \right\rangle$$

$$\nabla f(1, 1, 5) = \langle 7, 2, -1 \rangle$$

$$\text{param. eq. } x = 1 + 7t$$

$$y = 1 + 2t$$

$$z = 1 - t$$

Sec 14.7 ex Maximum and Minimum Values

Def.

A function $f(x, y)$ at pt. $A(x_0, y_0, z_0) \in \text{Dom}(f)$ is said to have
(1) a local max (min) at A if $f(x, y) \leq f(x_0, y_0)$ ($f(x, y) \geq f(x_0, y_0)$) for all pts. (x, y) in some disk in $\text{Dom}(f)$ with center at (x_0, y_0) . The number $f(x_0, y_0)$ is called the local max (min) of f at A .

(2) A local extrema if $f(x, y)$ has a local max. or local min at A .

(3) absolute max. (min) at A if $f(x_0, y_0) \geq f(x, y)$ ($f(x_0, y_0) \leq f(x, y)$) for all $(x, y) \in \text{Dom}(f)$

The max. (min) value of f is $f(x_0, y_0)$

(4) Absolute extrema at if f has an absolute max. or absolute min at A

Def. A pt. $(x_0, y_0) \in \text{Dom } f(x, y)$ is called a critical pt. of f if $f_x(x_0, y_0) = 0$, and $f_y(x_0, y_0) = 0$ or $f_x(x_0, y_0)$ DNE or $f_y(x_0, y_0)$ DNE

Example: Find a, b s.t. $f(x, y) = x^2y + 3axy^2 - bxy$ has a critical pt. at $(b+1)$

Sol: $f_x = 2xy + 3ay^2 - by$
 $f_y = x^2 + 6axy - bx$

$$f_x(1, -1) = 0 \Rightarrow -2 + 3a + b = 0$$

$$3a + b = 2 \rightarrow ①$$

$$f_y(1, -1) = 0 \Rightarrow 1 - 6a - b = 0$$

$$-6a - b = -1 \rightarrow ②$$

to solve ① & ② we add

$$① + ② \Rightarrow -3a = 1 \Rightarrow a = -\frac{1}{3}$$

$$1 + b = 2 \Rightarrow b = 1$$

2nd Derivative test

Suppose that the ~~2nd~~ 2nd derivatives of $f(x, y)$ are cont. s. on a disk centered at a pt. (a, b) and let $f_{xx}(a, b) =$

$$f_{yy}(a, b) = 0$$

$$\text{let } D = f_{xx}(a, b) \cdot f_{yy}(a, b) - [f_{xy}(a, b)]^2$$

① $D > 0$, $f_{xx}(a, b) > 0 \Rightarrow f$ has a local min. (L. min.) at (a, b)
 $\quad \quad \quad$ $f(a, b)$ L. min. value

② $D > 0$, $f_{xx}(a, b) < 0 \Rightarrow f$ has a local max. (L. max.) at (a, b)
 $\quad \quad \quad$ $f(a, b)$ L. max. value

③ $D < 0 \Rightarrow f$ has a saddle pt. at (a, b) [f has neither
 a local max. or non loc. min. at (a, b)]

Example: classify the critical pts of ① $L(x, y) =$
 $2x^3 + 6xy^2 - 3y^3 - 150x \Rightarrow$ as L. max. > L. min. or
 saddle pt.

$$\begin{aligned} \text{Sol 6: } f_x &= 6x^2 + 6y^2 - 150 = 0 \\ 6x^2 + 6y^2 - 150 &\div 6 \\ x^2 + y^2 - 25 &\Rightarrow \text{①} \end{aligned}$$

$$\begin{aligned} f_y &= 12xy - 9y^2 = 0 \\ 3y(4x - 3y) &= 0 \\ 3y = 0 &\Rightarrow 4x - 3y = 0 \\ y = 0 &\Rightarrow y = \frac{4}{3}x \end{aligned}$$

$$\begin{aligned} \text{If } y = 0 &\Rightarrow \text{①: } x^2 = 25 \\ x &= \pm 5 \end{aligned}$$

$(\pm 5, 0)$ critical pts

$$\text{If } y = \frac{4}{3}x \Rightarrow \text{①}$$

$$x^2 + \frac{16}{9}x^2 = 25$$

$$\frac{25}{9}x^2 = 25$$

$$x^2 = 9$$

$$x = \pm 3$$

$$x = 3 \Rightarrow y = \frac{4}{3}(3) = 4$$

$$x = -3 \Rightarrow y = \frac{4}{3}(-3) = -4$$

$(3, 4), (-3, -4)$ critical pts

$$f_{xx} = 12x$$

$$f_{yy} = 12x - 18y$$

$$f_{xy} = 12y$$

$$D = (12x)(12x - 18y) - [12y]^2$$

$$\text{② } f(x, y) = x^3 + y^2 - 8x - 6y + 2$$

$$f_x = 3x^2 - 8 = 0 \Rightarrow x = 2$$

$$f_y = 2y - 6 = 0 \Rightarrow y = 3$$

f has only one critical pt
 $(2, 3)$

$$f_{xx} = 2$$

$$f_{yy} = 2$$

$$f_{xy} = 0$$

$$D = 2(2) - 0^2 = 4$$

$$D(2, 3) = 4 > 0$$

$$f_{xx}(2, 3) = 2 > 0$$

$\therefore f$ has absolute min
at $(2, 3)$

D	f_{xx}	Type of pt.
$(5, 0)$	$f_{xx}(5) = +$	local min $\Rightarrow L \cdot \min = f(5)$
$(-5, 0)$	$f_{xx}(-5) = -$	local max. at $(-5, 0)$
$(3, 4)$	$f_{xx}(3) (f_{xx}(3) - f_{yy}(4)) - (f_{xy}(3, 4))^2$	Saddle pt. at $(3, 4)$
$(-3, -4)$	$f_{xx}(-3) (f_{xx}(-3) - f_{yy}(-4)) - (f_{xy}(-3, -4))^2$	Saddle pt. at $(-3, -4)$

$$[3] f(x, y) = x^4 + y^4 - 4xy + 1$$

$$f_x = 4x^3 - 4y = 0 \Rightarrow y = x^3 \rightarrow ①$$

$$f_y = 4y^3 - 4x = 0 \Rightarrow y^3 = x \rightarrow ②$$

①, ②

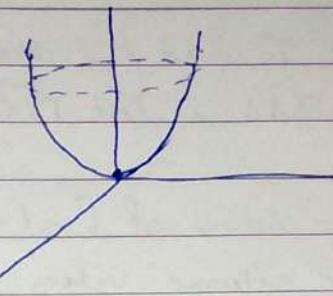
$$y = (x^3)^3 \Rightarrow x = 0, x = -1, x = 1$$

$$x = x^9 \Rightarrow y = 0, y = -1, y = 1$$

f has 3 critical pts

$$(0, 0), (-1, -1), (1, 1)$$

Example 8 $f(x, y) = x^2 + y^2$
 $z = x^2 + y^2$



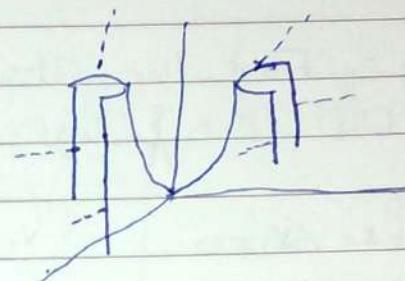
So, f has not at $(0, 0)$ an absolute min
 $f(0, 0) = 0$ is the absolute min value

F has no absolute max.

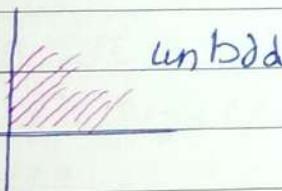
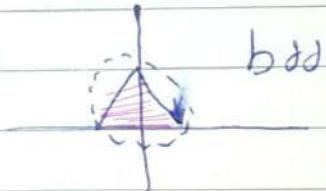
Example 8 $f(x, y) = y^2 - x^2$
 $z = y^2 - x^2$

Sol :-

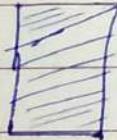
F has no absolute extreme



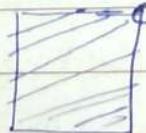
Remarks: A region D in \mathbb{R}^2 is bounded (bdd) if D lies inside some circle



② A region D in \mathbb{R}^2 is closed if its boundary pts. belongs to D



Closed, bdd



not closed, bdd

not closed, bdd

Extreme Value Thm for functions in 2 variables :-

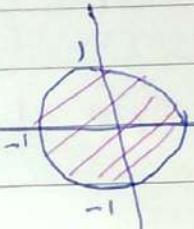
If $f(x, y)$ conts on a closed bdd set D in \mathbb{R}^2 , then f has absolute max, and absolute min at pts in D

Remark To find the absolute extrema of a function $f(x, y)$ on a closed Bdd \rightarrow let D in \mathbb{R}^2

- ① Find the values of f at the critical pts. inside D
- ② Find the extreme values of f on the boundary of D
- ③ the largest value of f in ①② is the absolute max of f
- ④ the smallest value of f in ①② is the absolute min of f

Example Find the absolute extrema of $f(x, y) = 2x^3 + y^4$ on the Dbd $D = \{(x, y) : x^2 + y^2 \leq 1\}$

Sol 1 $\begin{cases} f_x = 6x = 0 \Rightarrow x = 0 \\ f_y = 4y = 0 \Rightarrow y = 0 \end{cases}$



$(0, 0) \in D$

$(0, 0) \in D$

value = 0

Step 2 on the Boundary of D

where $\frac{\partial f}{\partial x} = 0 \Leftrightarrow x^2 + y^2 = 1 \Rightarrow y^2 = 1 - x^2$

$$g(x) = f \Big|_{y^2 = 1 - x^2} = 2x^3 + (1 - x^2)^2$$

$$g(x) = 2x^3 + 1 - 2x^2 + x^4 \quad x \in (-1, 1) \rightarrow \text{domain}$$

$$\begin{aligned} g'(x) &= 6x^2 - 4x + 4x^3 = 0 \\ &= 2x(3x^2 - 2 + 2x^2) = 0 \end{aligned}$$

$$2x = 0 \Rightarrow 2x^2 + 3x - 2 = 0$$

$$x = 0 \quad (2x - 1)(x + 2) = 0$$

$$x = 0 \quad x = -2 \quad \Rightarrow \quad x = -2$$

circle \Rightarrow $x \in [-1, 1]$

Critical pts $x=0 \Rightarrow \frac{1}{2} = -1 \Rightarrow 1$
 $x=0 \Rightarrow y^2 = 1-x^2 \Rightarrow y = \pm 1$
 $x = \frac{1}{2} \Rightarrow y^2 = 1-x^2 \Rightarrow y = \pm \frac{\sqrt{3}}{2}$
 $x = -1 \Rightarrow y^2 = 0 \Rightarrow y = 0$
 $x = 1 \Rightarrow y^2 = 0 \Rightarrow y = 0$

* critical pts. $(1,0), (-1,0), (0,1), (0,-1), \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right), (0,0)$

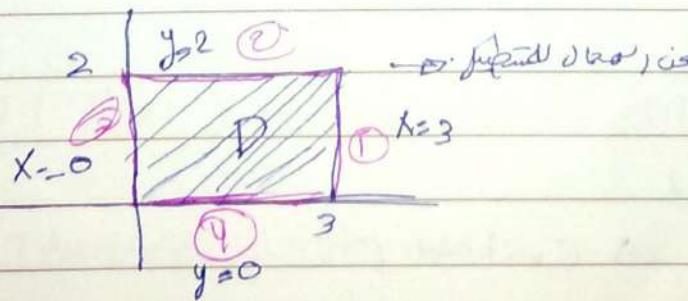
pt	$(0,0)$	$(1,0)$	$(-1,0)$	$(0,1)$	$(0,-1)$	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	$\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$
f	0	2	-2	1	1	$\frac{13}{16}$	$\frac{13}{16}$

absolute max. of f is 2 holds at $(1,0)$

absolute min. of f is -2 holds at $(-1,0)$

Example Find the absolute extrema of $f(x,y) = x^2 - 2xy + 2y$, on the ~~interior~~ rectangle $D = \{(x,y) : 0 \leq x \leq 3, 0 \leq y \leq 2\}$

Sol 8



Step 1

$$\begin{aligned} f_x = 2x - 2y &= 0 \Rightarrow y = x \quad (1) \\ f_y = -2x + 2 &= 0 \Rightarrow x = 1 \quad (2) \end{aligned} \quad \left. \begin{aligned} &g = 1 \quad \text{by (1)} \\ &g = 1 \quad \text{by (2)} \end{aligned} \right\}$$

(1, 1) $\in D \Rightarrow$ Critical Point (Maxima)

Step 2

(1) $x=3$

$$g_1(y) = f(3, y) = 9 - 6y + 2y = 9 - 4y, \quad 0 \leq y \leq 2$$

$$g_1'(y) = -4 \neq 0$$

Critical pts. $y=0 \Rightarrow x=3$

$$y=2 \Rightarrow x=3$$

(3, 0), (3, 2) \Rightarrow critical pts.

(2) $y=2$

$$g_{(2)}(x) = f(x, 2) = x^2 - 4x + 4, \quad 0 \leq x \leq 3$$

$$g_{(2)}' = 2x - 4 = 0 \quad [x=2]$$

$$x=0, x=2, x=3$$

$$y=2 \Rightarrow y=2 \Rightarrow g=2$$

(0, 2), (2, 2), (3, 2) \Rightarrow critical pts.

(3) $x=0$

$$g_3(y) = 2y, \quad 0 \leq y \leq 2$$

$$g_3' = 2 \neq 0$$

$$y=0, y=2$$

(0, 0), (0, 2) \Rightarrow critical pts.

(4) $y=0$

$$g_4(x) = x^2, \quad 0 \leq x \leq 3$$

$$g_4'(x) = 2x = 0 \quad x=0$$

$(0,0), (3,0)$ critical pts.

Pt.	$(1,1)$	$(3,0)$	$(3,2)$	$(0,2)$	$(2,2)$	$(0,0)$
f	1	9	1	4	0	0

\therefore absolute max is 9 holds at $(3,0)$

\therefore absolute min is 0 holds at $(2,2) \text{ & } (0,0)$

Critical pt \rightarrow is either absolute max or min or local max or min

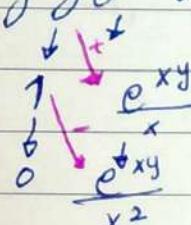
Ch. 15 Multiple Integrals

Sec 15.1 Double integrals

$\iint f(x,y) dx dy$ or $\iint f(x,y) dy dx$

$$\text{Example } \star \quad \iint y^2 e^{xy} dx dy = \int y^2 e^{xy} dy = \int y e^{xy} dy$$

$$= \int y e^{xy} dy$$

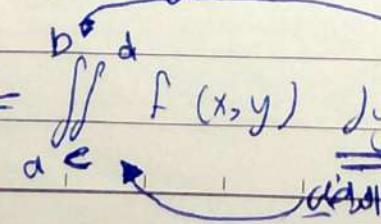

 $= \frac{y e^{xy}}{x} - \frac{e^{xy}}{x^2} + C$

$$\# \text{Remark: } \iint f(x) g(y) dx dy = (\int f(x) dx) (\int g(y) dy)$$

15.2 ~~Iterated~~ Iterated Integrals:-

Thm 5 let $R = \{(x,y) : a \leq x \leq b, c \leq y \leq d\}$

$$\iint f(x,y) dA = \iint f(x,y) dy dx$$


 \Rightarrow $\int_a^b \int_c^d f(x,y) dy dx$

$$= \int_a^b \int_c^y f(x, y) \, dx \, dy$$

$\Delta A \rightarrow \frac{\Delta y \Delta x}{\Delta x \Delta y}$

$$\text{Rule} \Rightarrow (i) \iint_{\boxed{R}} (f+y) dA = \iint_R f dA + \iint_R y dA$$

$$(2) \iint_R c f \, dA = c \iint_R f \, dA$$

(3) $f(x, y) \geq g(x, y)$ on a region R in \mathbb{R}^2

$$\iint_R f dA \geq \iint_R g dA$$

Example :-

$$\text{④ } \iint (x - 3y^2) dy dx = \int (xy - y^3) dx = \frac{yx^2}{2} - y^3 x$$

$$2 \int_{\frac{\pi}{2}}^{\pi} \int_0^y \sin x \cos y \, dy \, dx \quad \text{iterated.}$$

$$= \left(\int_0^{\frac{\pi}{2}} 8 \sin x \, dx \right) \cdot \left(\int_0^{\frac{\pi}{2}} \cos y \, dy \right)$$

$$-\cos x \begin{bmatrix} \frac{\pi}{2} \\ 0 \end{bmatrix} + \sin y \begin{bmatrix} \pi \\ 0 \end{bmatrix}$$

$$1 * 0 = \boxed{0}$$

Example 8 Find $\iint_R y \sin(xy) dA$, where $R = \{ (x, y) : 1 \leq x \leq 2, 0 \leq y \leq \pi \} = [1, 2] \times [0, \pi]$

$$1 \leq x \leq 2, 0 \leq y \leq \pi \} = [1, 2] \times [0, \pi]$$

$$\text{Sol 8) } \iint_R y \sin(xy) dA = \int_0^\pi \int_1^2 y \sin(xy) dx dy$$

$$= \int_0^\pi \left[\frac{y(-\cos(xy))}{y} \right]_1^2 dy$$

$$E = \int_0^\pi [\cos(2y) - \cos y] dy$$

$$= - \left[\frac{\sin(2y)}{2} - \sin y \right]_0^\pi = \pi$$

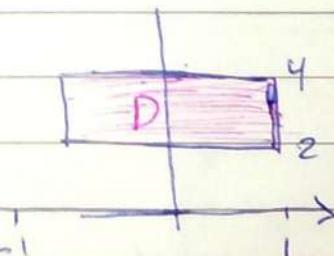
Ex 8: $I = \iint_D \sqrt{1-x^2} dA$. where $dA = [-1, 1] \times [0, 2]$

$$\text{Sol 8) } I = \int_{-1}^1 \int_0^2 \sqrt{1-x^2} dy dx$$

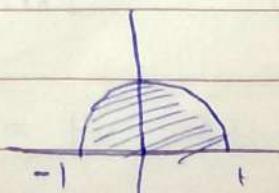
$$= \int_{-1}^1 2 \sqrt{1-x^2} dx$$

$$= 2 \cdot \frac{1}{2} + (1)^2$$

$$= \pi$$



Only 1st quadrant

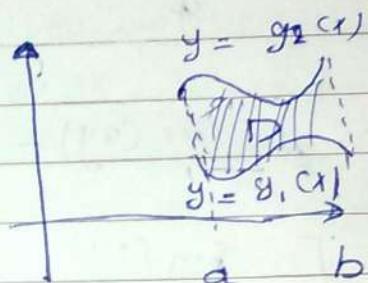


Sec 15.3 Double integrals over general Regions

Type 1 Region

$$D = \{(x, y) : a \leq x \leq b, g_1(y) \leq y \leq g_2(y)\}$$

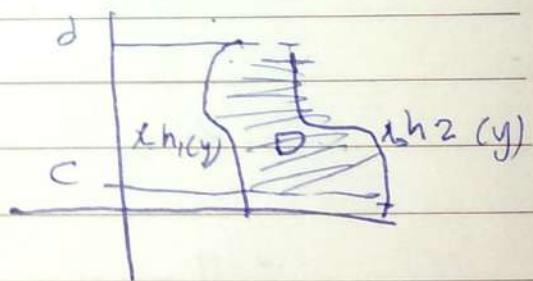
$$\iint_D f(x, y) dA = \int_a^b \int_{g_1(y)}^{g_2(y)} f \, dy \, dx$$



Type 2 Region

$$D = \{(x, y) : h_1(y) \leq x \leq h_2(y), c \leq y \leq d\}$$

$$\iint_D f(x, y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f \, dx \, dy$$



Ex 8 evaluate

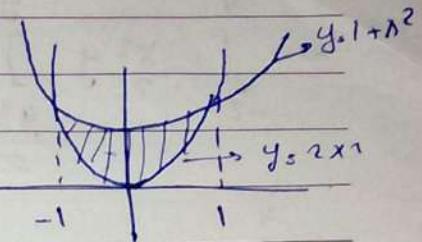
ii) $I_1 = \iint_D (x+2y) dA$, where D is the region

enclosed by $y = 2x^2$, $y = 1+x^2$

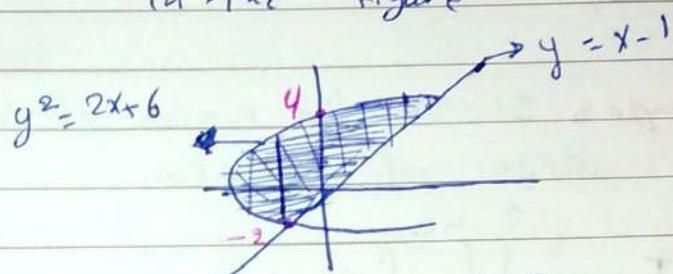
$$2x^2 = 1 + y^2 \quad \text{or} \quad y^2 = 2x^2$$

$$x^2 = 1 \quad x = \pm 1$$

$$I_1 = \iint_{-1}^1 \frac{1+x^2}{2x^2} (x+2y) dy dx$$



■ $I_2 = \iint_R xy dA$, where R is the shaded region in the figure



Type 2 Region

$$x = \frac{y^2 - 6}{2}$$

$$x = y + 1$$

$$\frac{y^2 - 6}{2} = y + 1$$

$$\frac{y^2 - 6}{2} = y + 1$$

$$y^2 - 2y - 8 = 0$$

$$(y-4)(y+2) = 0$$

$$y=4, \quad y=-2$$

أخطاء في التكامل
أخطاء في التكامل

$$I_2 = \iint_{-2}^4 \int_{\frac{y^2 - 6}{2}}^{y+1} xy dx dy$$

$$I_1 = \iint_{-1}^1 \frac{1+x^2}{2x^2} (x+2y) dy dx$$

$$= \int_{-1}^1 \left[xy + \frac{y^2}{2} \right]_{2x^2}^{1+x^2} dx$$

$$= \int_{-1}^1 x(1+x^2) + (1-x^2)^2 dx$$

$$= \int_{-1}^1 -x^2y^2 - (2x^2)^2 dx$$

$$= \int_{-1}^1 x + x^3 + 1 + 2x^2 + x^4 - 2x^3 - 4x^4 dx$$

$$= \int_{-1}^1 [x - x^3 + 1 + 2x^2 - 3x^4] dx$$

$$= \dots$$

$$= \int_{-2}^4 \left[\frac{x^2}{2} y \right]_{\frac{y^2-6}{2}}^{y+1} dy$$

$$= \frac{1}{2} \int_{-2}^4 y(y+1)^2 - \left(\frac{y^2-6}{2} \right)^2 y dy$$

$$= \frac{1}{2} \int_{-2}^4 \left[y^3 + 2y^2 + y - \left(\frac{y^5 - 12y^3 + 36y}{4} \right) \right] dy$$

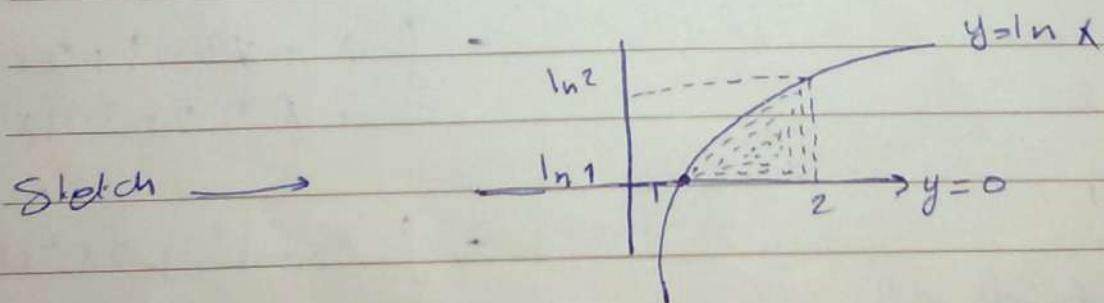
Example 5 Sketch the region of integration and change the order of integration

$$(1) I_1 = \iint_D f(x, y) dy dx$$

$$(2) I_2 = \iint_D f(x, y) dx dy$$

$$(3) I_3 = \int_{-2}^4 \int_{\frac{y^2-6}{2}}^{y+1} f(x, y) dx dy$$

Sol of (1) $D \Rightarrow y=0 \rightarrow y=\ln x$
 $1 \leq x \leq 2$



change \rightarrow

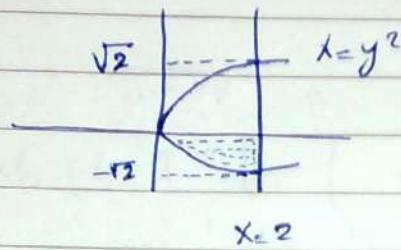
$$dy dx \rightarrow dx dy$$

$$\text{Type 1} \quad \text{Type 2} \Rightarrow x \leq e^y \quad 0 \leq y \leq \ln x$$

$x=2$

$$I_1 = \iint_D f \, dx \, dy$$

2) $D \rightarrow x = y^2 \rightarrow x = 2$
 $\sqrt{2} \leq y \leq 0$



$$y^2 = 2 \rightarrow y = \pm \sqrt{2}$$

نواحي قطاع

Type 2 \rightarrow Type 1
 $dx \, dy$

$$y = \pm \sqrt{x}$$

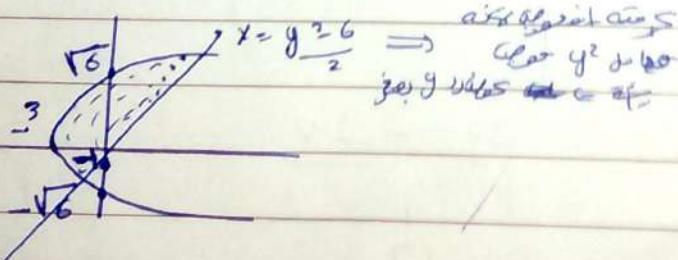
$$I_2 = \int_0^2 \int_{-\sqrt{x}}^{\sqrt{x}} f \, dy \, dx$$

أمثلة على ذلك \rightarrow
 $y = -\sqrt{x}$
 $y = 0$

$$0 \leq x \leq 2$$

3) Region $x = \frac{y^2 - 6}{2} \rightarrow x = y + 1$

$$-2 \leq y \leq 4$$



Type 2
 $dx \, dy$

Type 1
 $dy \, dx$

$$y = -\sqrt{2x + 6} \rightarrow y = \sqrt{2x + 6}$$

$$-\sqrt{2x+6} = x-1$$

$$2x+6 = y^2 - 2x + 1$$

$$x^2 - 4x - 5 = 0$$

$$(x-5)(x+1) = 0$$

$$x = 5 \quad x = -1$$

$$I_3 = \int_{-3}^{-1} \int_{-\sqrt{2x+6}}^{\sqrt{2x+6}} f \, dy \, dx + \int_{-1}^5 \int_{x-1}^{\sqrt{2x+6}} f \, dy \, dx$$

Example 8

Evaluate $\iint_D \sin y^2 \, dx \, dy$

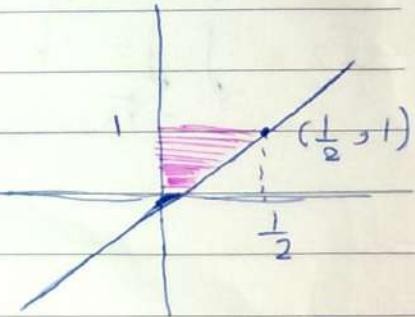
$$(2) I_2 = \int_0^2 \int_{\frac{y}{2}}^y e^{x^2} \, dx \, dy$$

Soln II

$$dy \, dx \rightarrow dx \, dy$$

$$0 \leq x \leq \frac{1}{2}, \quad y = 2x, \quad y = 1$$

$$x = \frac{y}{2} \rightarrow x = 0, \quad 0 \leq y \leq 1$$



$$I_1 = \int_0^1 \int_0^{y/2} \sin y^2 \, dx \, dy$$

$$= \left[x \sin y^2 \right]_0^{y/2} \, dy$$

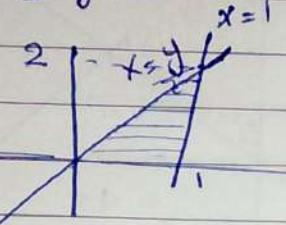
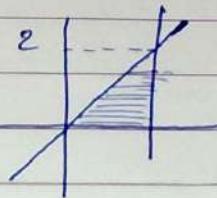
$$w = y^2 \rightarrow dw = 2y \, dy = dy = \frac{dw}{2y}$$

$$\frac{1}{4} \int_0^1 \sin w \, dw = \frac{1}{4} \left[-\cos w \right]_0^1$$

$$= \frac{-1}{4} \left[\cos 1 - 1 \right]$$

$$= \frac{1}{4} - \frac{1}{4} \cos 1$$

$$\begin{array}{l}
 \boxed{2} \quad dx dy \rightarrow \cancel{dy} \rightarrow dy dx \\
 x = y \rightarrow x = \cancel{y} \\
 0 \leq y \leq 2 \\
 x = 1
 \end{array}$$



$$I_2 = \int_0^1 \int_0^{2x} e^{x^2} dy dx$$

$$= \int_0^1 2x e^{x^2} dx$$

$$I_2 = \int_0^1 2x e^w \frac{dw}{2x}$$

$$= e^w \Big|_0^1$$

$$= e^1 - e^0 = \boxed{e-1}$$

$$w = x^2$$

$$dw = 2x dx$$

$$\frac{dw}{2x} = dx$$

$$x = 0 \Rightarrow w = 0^2 = 0$$

$$x = 1 \Rightarrow w = 1^2 = 1$$

~~Example~~

Combine the sum of the 2 double integrals as a single double integral.

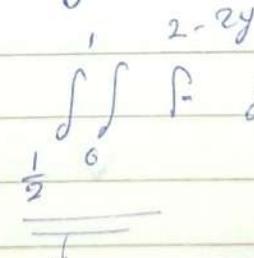
$$I = \int_0^{\frac{1}{2}} \int_0^{2y} f dx dy + \int_{\frac{1}{2}}^1 \int_0^{2-2y} f dx dy$$

D₁

$$dx dy$$

$$x = 0 \Rightarrow x = 2y$$

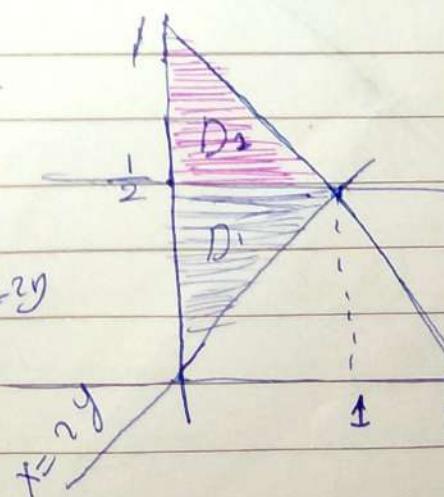
$$0 \leq y \leq \frac{1}{2}$$



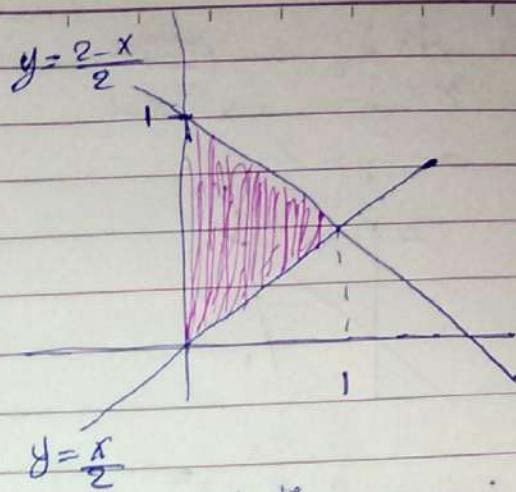
$$dx dy$$

$$x = 0 \Rightarrow x = 2-2y$$

$$\frac{1}{2} \leq y \leq 1$$



$$I = \int_0^1 \int_{\frac{x}{2}}^{\frac{2-x}{2}} f \, dy \, dx$$



* **Rule 8** The Volume of the solid ~~is~~ bdd ^{above} by the surface $z_1 = f_1(x, y)$ and below by the surface $z_2 = f_2(x, y)$ and the projection of the solid on the xy -plane is the region D is

$$V = \iint_D (f_1 - f_2) \, dA$$

Example Find the Volume of the Solid lies under $z = x^2 + y^2$ and lies above the region D in the xy -plane bdd by $y = 2x$ $y = x^2$

Solid surfaces $z = x^2 + y^2$

$$z = 0 \quad \text{and} \Rightarrow \text{Solid lies above the xy-plane}$$

so D lies in the xy -plane

$D =$

$$V = \iint_D (x^2 + y^2 - 0) \, dA$$

$$= \int_{x^2}^2 \int_{x^2}^{2x} (x^2 + y^2) \, dy \, dx$$

Ex 15.3 Set up as a double integral but do not evaluate
 The volume tetrahedron, bdd by $x+2y+z=2$, $x=0$, $z=0$
 $\therefore x=2y$

Sol 3) Surfaces $z = 2-x-2y$
 $z = 0$

$$D: x=0$$

$$x=2y \quad g = \frac{x}{2}$$

$$2x - 2y = 0 \quad y = \frac{2-x}{2}$$

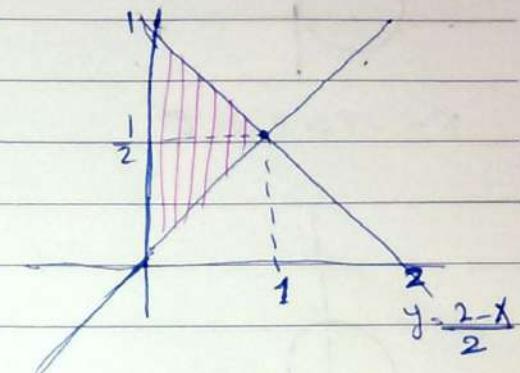
$$V = \int_0^{\frac{2-x}{2}} \int_{\frac{x}{2}}^{2-x} (2-x-2y) dy dx$$

in the x y plane, we have

the curve $y = \frac{2-x}{2}$ is the

intersection of the line

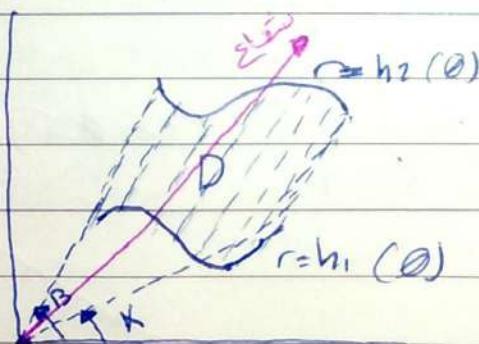
$(0,1)$ and $(2,0)$



$$y = \frac{2-x}{2}$$

Sol 15.4

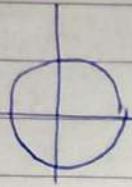
D is region in the xy plane as in the figure.



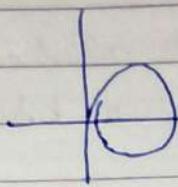
revolution, with origin

$$x < B \quad , \quad 0 \leq \beta - x \leq 2\pi$$

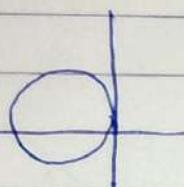
$$\iint_D f(x, y) dA = \int_0^B \int_{h_1(\theta)}^{h_2(\theta)} f(r \cos \theta, r \sin \theta) r dr d\theta$$



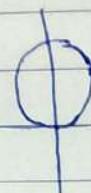
$$r = a$$



$$r = 2a \cos \theta$$



$$r = -2a \cos \theta$$



$$r = 2a \sin \theta$$

$$r = -2a \sin \theta$$

where $a \rightarrow \infty$

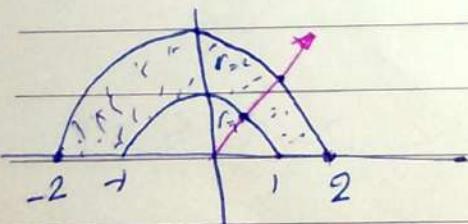
Example 2. Evaluate $I = \iint_R (3x + 4y^2) dA$

where R is the region in the upper half plane bounded by

$$\begin{cases} x^2 + y^2 = 1 \\ x^2 + y^2 = 4 \\ y \geq 0 \end{cases}$$

Sol 82

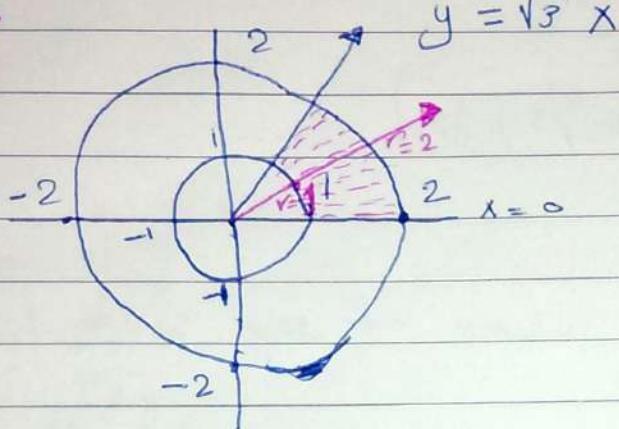
$$I = \int_0^{\pi} \int_1^2 (3r \cos \theta + 4r^2 \sin^2 \theta) r dr d\theta$$



Example 8 Evaluate $I = \iint_D \tan^{-1} \frac{y}{x} dA$

Where $D = \{(x, y) : 1 \leq x^2 + y^2 \leq 4, 0 < y \leq \sqrt{3}x\}$

Sol 8



So θ from 0 to $\pi/3$

$$y = \sqrt{3}x \Rightarrow \tan \theta = \frac{y}{x} = \sqrt{3}$$

$$I = \iint_D \tan^{-1} \frac{y}{x} dA = \int_0^{\pi/3} \int_1^2 \theta r dr d\theta$$

$$= \left(\int_0^{\pi/3} \theta d\theta \right) \left(\int_1^2 r dr \right) = \dots$$

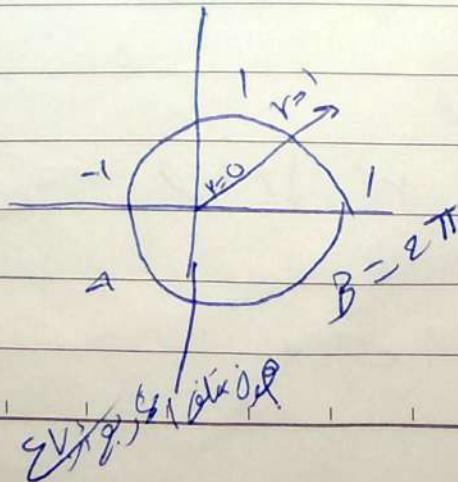
Example 9 Find the volume of the solid bounded by $z=1$ and $z = 2 - x^2 - y^2$

Sol 9 Surface $z=1$

$$z = 2 - x^2 - y^2$$

$$\boxed{1 = 2 - x^2 - y^2}$$

$$x^2 + y^2 = 1$$



$$r = \iint_D 2 - x^2 - y^2 - 1 \) dA$$

الخط
الصاف

لحوظي ملحوظي
نحو اتصنف نحو اتصنف

رسالة

$$= \int_0^{\pi/2} \int_0^1 (1-r^2) r dr d\theta$$

$$= \left(\int_0^{\pi/2} d\theta \right) \left(\int_0^1 (r-r^3) dr \right) = \dots$$

Example 8 Find the volume of the solid lies under

$z = \sqrt{x^2 + y^2}$ above the xy -plane and inside

$$x^2 + y^2 = 2x$$

$$\text{So } \begin{cases} z = \sqrt{x^2 + y^2} \\ z = 0 \end{cases} \Rightarrow x^2 + y^2 = 0 \text{ at origin}$$

لأن ~~و~~ \neq 0

$$\text{So } x^2 + y^2 = 2x \Rightarrow \text{لوجه الآخر}$$

$$\begin{aligned} x^2 - 2x + y^2 &= 0 \\ (x-1)^2 + y^2 &= 1 \end{aligned}$$

$z \leq$

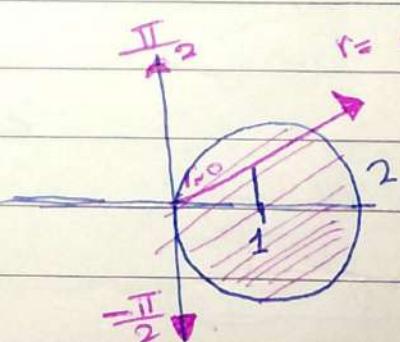
فقط

$$r = \frac{1}{2} \cos \theta$$

$$V = \iint_D \sqrt{x^2 + y^2} - 0 \) dA$$

$$= \int_{-\pi/2}^{\pi/2} \int_0^{2 \cos \theta} r^2 dr d\theta$$

of polar



أمثلة على التكامل

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8 \frac{\cos^3 \theta}{3} \, d\theta = \dots$$

Example 8 Evaluate

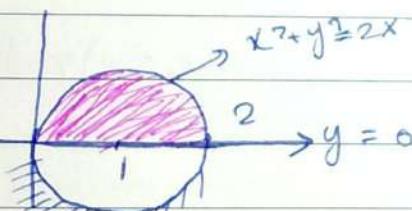
① $I_1 = \int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} \, dy \, dx$

② $I_2 = \int_{-3}^3 \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} 8 \sin(x^2+y^2) \, dy \, dx$

③ $\int_0^1 \int_y^{\sqrt{2-y^2}} (x+y) \, dx \, dy$

Sol 8, ① $y=0 \rightarrow y = \sqrt{2x-x^2}$

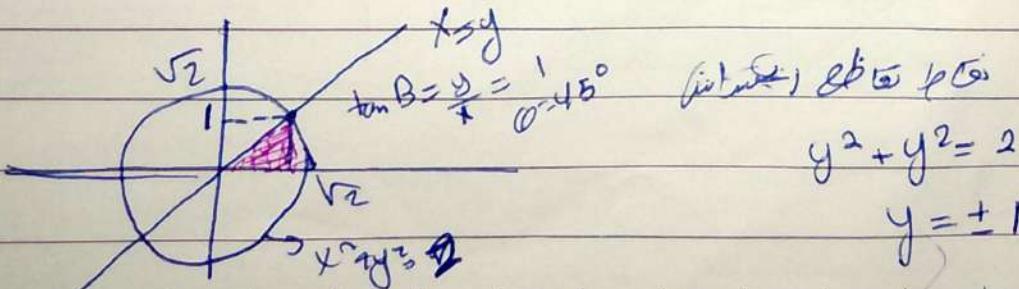
$$0 \leq x \leq 2 \quad y^2 = 2x - x^2 \Rightarrow x^2 + y^2 = 2x$$



$$I_1 = \int_0^{\frac{\pi}{2}} \int_0^{2\cos \theta} r \, r \, dr \, d\theta = \dots$$

जबकि $\sqrt{3} \cos \theta = 1$
 $\theta = \frac{\pi}{6}$

③ $x = y \quad x = \sqrt{2-y^2} \quad 0 \leq y \leq 1 \quad x^2 = 2-y^2 \Rightarrow x^2+y^2=2$



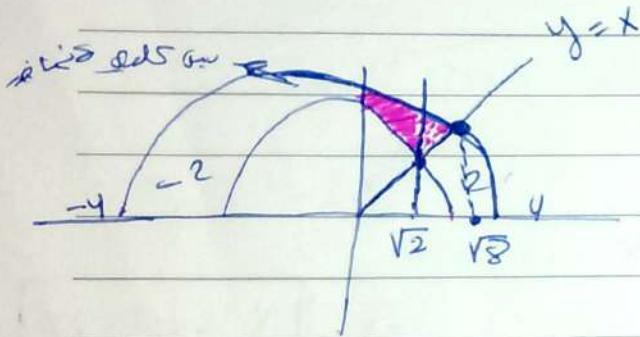
$$I_3 = \int_0^{\pi/4} \int_{\sqrt{2}}^{\sqrt{16-x^2}} (r \cos \theta + r \sin \theta) r dr d\theta$$

Example 8 Combine the sum as single double integral

$$\text{Ansatz: } I = \int_0^{\sqrt{2}} \int_{\sqrt{4-x^2}}^{\sqrt{16-x^2}} f(x, y) dy dx + \int_{\sqrt{2}}^{\sqrt{5}} \int_x^{\sqrt{16-x^2}} f(x, y) dy dx.$$

So 1. $y = \sqrt{4-x^2} \rightarrow y = \sqrt{16-x^2}$
 $0 \leq x \leq \sqrt{2}$

2. $y = x \rightarrow y = \sqrt{16-x^2}$
 $\sqrt{2} \leq x \leq \sqrt{8}$



$$\begin{aligned} x^2 + y^2 &= 4 \\ y &= x \\ \Rightarrow x^2 + x^2 &= 4 \\ 2x^2 &= 4 \\ x &= \sqrt{2} \end{aligned}$$

$$I = \int_{\pi/4}^{\pi/2} \int_2^4 f(r \cos \theta, r \sin \theta) r dr d\theta$$

$$y^2 + x^2 = 16$$

$$y = x$$

$$\Rightarrow x^2 + x^2 = 16$$

$$2x^2 = 16$$

$$x = \sqrt{8}$$

Sec 15.7 Triple Integrals

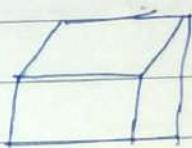
$$B = [a, b] \times [c, d] \times [r, s] = \{(x, y, z) : a \leq x \leq b, c \leq y \leq d, r \leq z \leq s\}$$

$$\iiint_B f(x, y, z) dV = \int_a^b \int_c^d \int_r^s f(x, y, z) dz dy dx$$

$$= \int_c^d \int_a^b \int_r^s f(x, y, z) dz dy dx \quad \text{[معطى]}$$

Ex 2. $B = \frac{[0, 1]}{x} \times \frac{[2, 3]}{y} \times \frac{[-1, 5]}{z}$ (B)

$$\iiint B xy^2 z^3 dV =$$



Sol 2. $\int_{-1}^1 \int_2^3 \int_0^5 xy^2 z^3 dx dy dz$

$$= \left(\int_0^1 x dx \right) \left(\int_2^3 y^2 dy \right) \left(\int_{-1}^5 z^3 dz \right)$$

Rule 3 let S be the solid bounded by

① $g_1(x, y) \leq z \leq g_2(x, y) \Rightarrow D$ the projection of S on

the xy -plane $\Rightarrow \iiint_S f(x, y, z) dV = \iint_D \left[\int_{g_1}^{g_2} f(x, y, z) dz \right] dA$

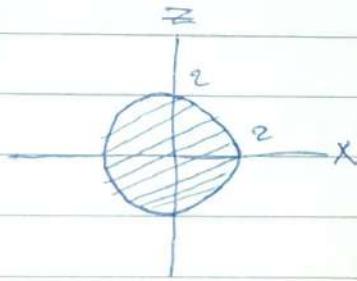
(2) $h_1(x, z) \leq y \leq h_2(x, z)$, Δ the projection of S' on the xz -plane $\Rightarrow \iiint_S f \, dv = \iint_D [\int_{h_1}^{h_2} f \, dy] \, dA$

(3) $u_1(y, z) \leq x \leq u_2(y, z)$, Δ the projection of S' on the yz -plane $\Rightarrow \iiint_S f \, dv = \iint_D [\int_{u_1}^{u_2} f \, dx] \, dA$

Example: Evaluate $I = \iiint_E \sqrt{x^2 + z^2} \, dv$, where E is the solid bounded by $y = x^2 + z^2$, $y=4$

Sol: Surface $y = x^2 + z^2$
 $y=4$

$D \in \mathbb{R}^2$ s. $x^2 + z^2 = 4$



$$I = \iint_D \left[\int_{x^2 + z^2}^4 \sqrt{x^2 + z^2} \, dy \right] \, dA$$

$$= \int_0^{2\pi} \int_0^2 \int_{r^2}^4 r \, dy \, r \, dr \, d\theta$$

Example: Express ~~iterated~~ iterated integral $I = \iint_0^1 \int_{\sqrt{x}}^{1-y} f(x, y, z) \, dz \, dy \, dx$ in different order:

(1) First integrate with respect to x , then y , then z .

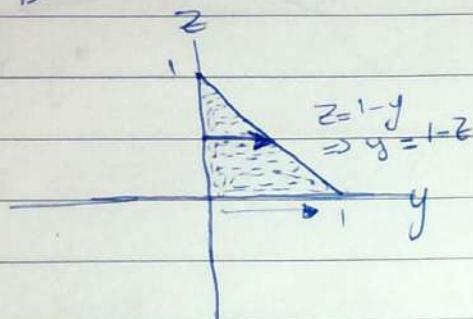
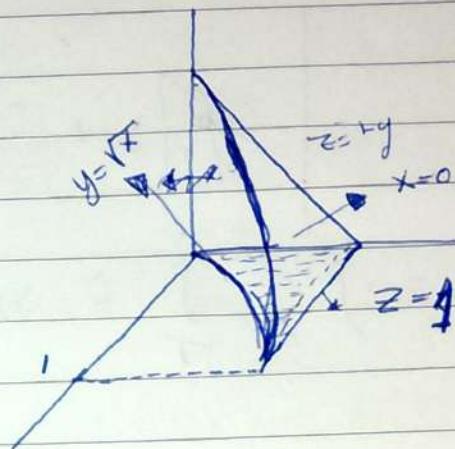
(2) First integrate with respect to y , then x , then z .

$$\text{Sol 8) surfaces } z=0 \rightarrow z=1-y$$

$$D \Rightarrow y = \sqrt{x} \rightarrow y = 1$$

$$0 \leq x \leq 1$$

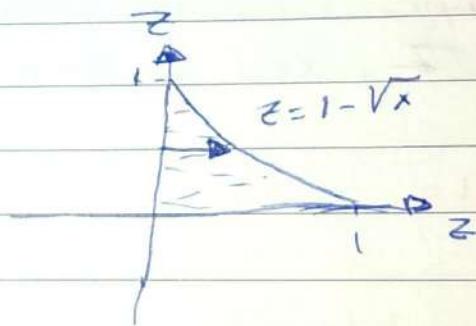
$$\text{II) } I = \iiint_D f \, dx \, dy \, dz$$



$$I = \int_0^1 \int_0^{1-x} \int_0^{1-y} f \, dz \, dy \, dx$$

$$\text{II) } \iiint_D f \, dy \, dx \, dz$$

$$= \int_0^1 \int_0^{1-x} \int_{\sqrt{x}}^{1-z} f \, dy \, dx \, dz$$



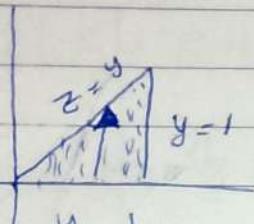
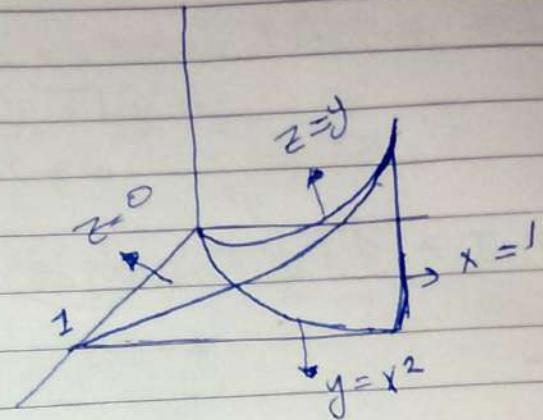
Example: Express the ~~integ~~ iterated integral $I = \iiint f(x, y, z) \, dz \, dy \, dx$ as iterated integral with order of integration with $x \int_0^1 \int_0^{\sqrt{x}} \int_0^{1-y} f(x, y, z) \, dz \, dy \, dx$

$$\text{Surfaces: } z=0 \rightarrow z=y$$

$$D_{xy}: \quad y=0 \rightarrow y=x^2$$

$$0 \leq x \leq 1$$

$$I = \iint_D \int_{\sqrt{y}}^1 f \, dx \, dz \, dy$$



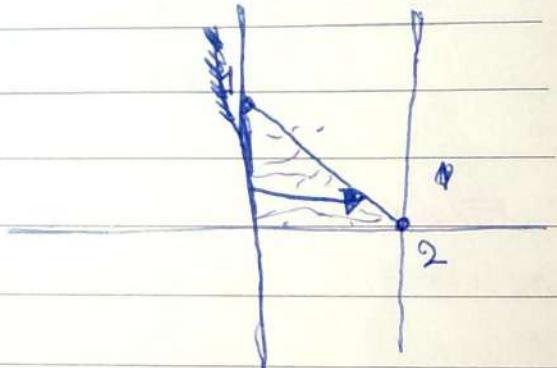
$$I = \int_0^1 \int_0^y \int_{\sqrt{y}}^1 f \, dx \, dz \, dy$$

Thm 8 the volume of solid S is $V = \iiint_S 1 \, dV$

Example write the volume of the solid bad by $x+2y+z=2$, $x=2$, $x=0$, $z=0$, as an iterated triple integral

Sol 8 Surfaces $\begin{cases} z = 2 - x - 2y \\ z = 0 \end{cases} \rightarrow \begin{cases} 2 - x - 2y = 0 \\ x + 2y = 2 \end{cases} \begin{cases} x = z \\ x = 2 \end{cases} \begin{cases} x = 0 \end{cases}$

$$V = \iiint_0^2 \int_0^{2-y} \int_0^{2-x-2y} 1 \, dz \, dx \, dy$$



Example 3 If $\iiint_A 5 \, dV = 13.5$

Find Volume of A 8!

$$\text{Volume} = \frac{13.5}{5} \Rightarrow \text{Volume} = 2.7$$

Rule 9 Area of region R is $A = \iint_R f dA$

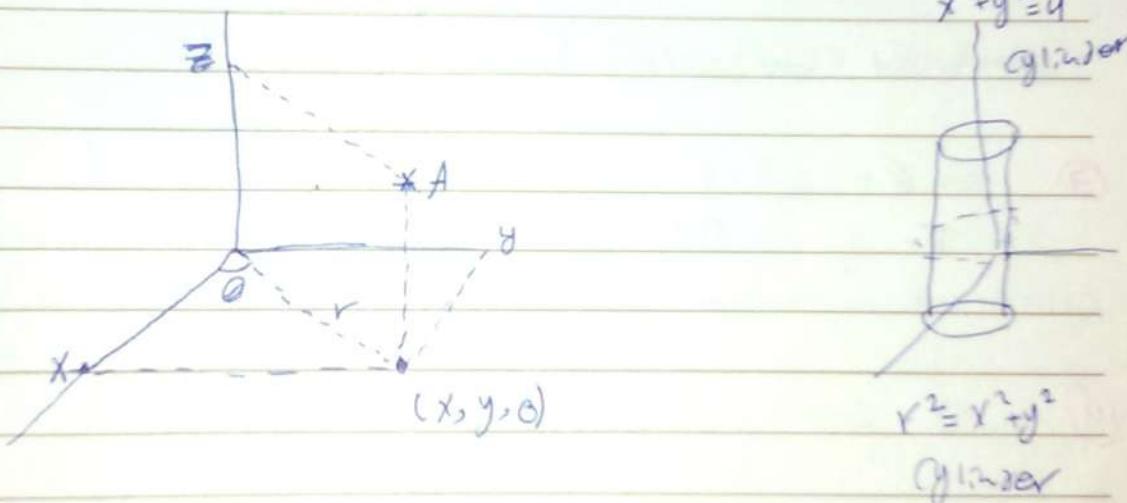
~~Mathilda~~

Example 8) If $\iint_D -2 \, dA = -13.5$, Find Area of D

$$\text{So } 1 = \frac{\text{Area}}{-2} = \frac{12.5}{-2}$$

Sec 15.8: Triple integrals in cylindrical coordinates

The cylindrical coordinates of the pt. $A(x, y, z)$ are $A(r, \theta, z)$ where $x = r \cos \theta$, $y = r \sin \theta$, $r = \sqrt{x^2 + y^2} \Leftrightarrow r^2 = x^2 + y^2$, $0 \leq \theta \leq 2\pi$, $\tan \alpha = \frac{y}{x}$



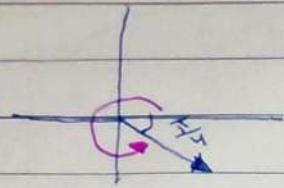
$$A(x, y, z) \rightarrow A(r, \theta, z)$$

Rectangular coordinates Cylindrical coordinates

Ex8) Find the cylindrical coordinates at the pt A with rectangular coordinates ① $A(3, 3, 7)$ ② $A(-3, 3, -7)$ ③ $A(-3, -3, 7)$

$$\textcircled{4} \quad A(3, 3, -7)$$

Sol 8



Given, $\cos \theta = \frac{3}{\sqrt{18}}$ and
 $\sin \theta = -\frac{3}{\sqrt{18}}$

$$\tan \theta = \frac{-3}{3} = -1$$

$$\theta = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}$$

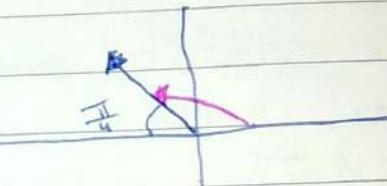
$$r = \sqrt{x^2 + y^2} = \sqrt{18} \Rightarrow \text{Cylindrical coordinates } A(\sqrt{18}, \frac{7\pi}{4}, -7)$$

② $r = \sqrt{18}$

$$\tan \theta = \frac{3}{-3} = -1$$

$$\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

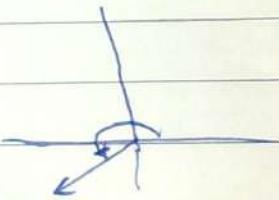
$$\text{Cylindrical coordinates } A(\sqrt{18}, \frac{3\pi}{4}, -7)$$



③ $\tan \theta = \frac{-3}{-3} = 1$

$$\theta = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

$$\text{cylindrical coordinates} = (\sqrt{18}, \frac{5\pi}{4}, -7)$$



④ cylind. cov. $(\sqrt{18}, \frac{5\pi}{4}, -7)$

Example 8 A $(5, \frac{2\pi}{3}, 2)$ in cylind. Cart. then find
 the rectangular coord. of A

$$\text{Sol 8} \quad x = 5 \cos\left(\frac{2\pi}{3}\right) = 5\left(\frac{-1}{2}\right) = -\frac{5}{2}$$

$$y = 5 \sin\left(\frac{2\pi}{3}\right) = 5\left(\frac{\sqrt{3}}{2}\right) = \frac{5\sqrt{3}}{2}$$

$$\text{rectangular coord. of A} \left(-\frac{5}{2}, \frac{5\sqrt{3}}{2}, 2\right)$$

Ex 8. Convert the surface $z^2 = 3x^2 + y^2 + x$ to cylind.
Coord.

Sol $\rightarrow z^2 = r^2 + 2r^2 \cos^2 \theta + r \cos \theta$

Ex 9. Convert to rectangular coord. $z = r^2 \cos \theta - 8 \sin \theta$

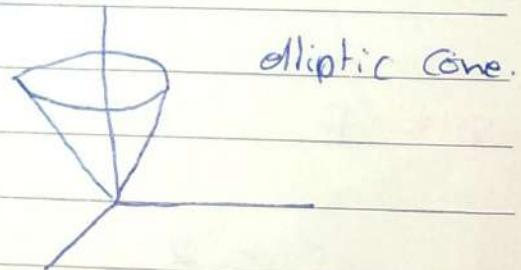
Sol 9. $zr = r^3 \cos \theta - 8 \sin \theta$

$z\sqrt{x^2+y^2} = (x^2+y^2)x - y$

$$\begin{aligned} \iiint_S f(x, y, z) \, dV &= \iint_D \left(\int_{g_1}^{g_2} f(x, y, z) \, dz \right) \, dA \\ &= \int_{D_{r\theta}} \int_{g_1}^{g_2} f(r \cos \theta, r \sin \theta, z) \, dz \, r \, dr \, d\theta \end{aligned}$$

Ex 10. Describe and Sketch the surface $z = r$

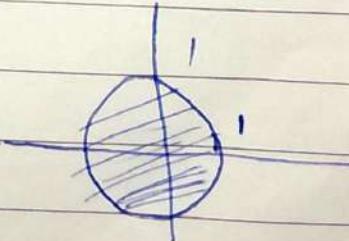
Sol 10. $z = \sqrt{x^2+y^2} \Rightarrow z^2 = x^2+y^2$



Ex 11. Find the Volume of the Solid within the cylinder $x^2+y^2=1$ below the plane $z=1$ and above the paraboloid $z=1-x^2-y^2$

Sol 11. Surface $z=1$

$z=1-x^2-y^2$



$$V = \int_0^{2\pi} \int_0^1 \int_{1-r^2}^4 1 \, dz \, r dr \, d\theta$$

using cylindrical
coordinate \Rightarrow

triple int. پیشنهاد

Example Evaluate

$$\textcircled{1} \quad I_1 = \int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{\infty} (x^2+y^2) \, dz \, dy \, dx$$

Sol @ D: $y = -\sqrt{4-x^2} \rightarrow y = \sqrt{4-x^2}$
 $-2 \leq x \leq 2$

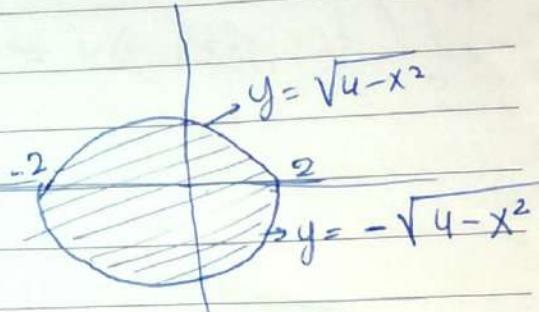
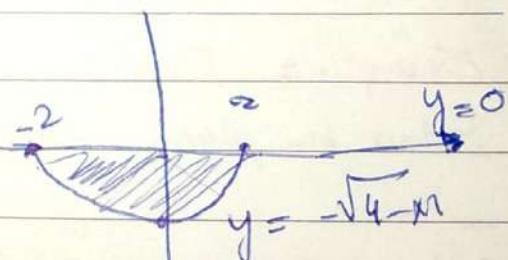
$$I_1 = \int_0^{2\pi} \int_0^2 \int_0^{\infty} r^2 \, dz \, r dr \, d\theta$$

$$I_1 = \int_0^{2\pi} \int_0^2 r^3 (2-r) \, dr \, d\theta \quad \dots$$

$$\textcircled{2} \quad I_2 = \int_{-2}^2 \int_{-\sqrt{4-x^2}}^0 \int_{\sqrt{x^2+y^2}}^{\infty} (x^2+y^2) \, dz \, dy \, dx$$

Sol @ D: $y = -\sqrt{4-x^2} \rightarrow y = 0$
 $-2 \leq x \leq 2$

$$I_2 = \int_{-\pi}^{2\pi} \int_0^2 \int_0^r r^2 \, dz \, r dr \, d\theta$$



at B, if it's ok to do it
 (Polar coord. sys) is the only other way

Example 8 Evaluate $\iiint_E (x+y+z) dV$, where E is the solid in the first octant that lies under the paraboloid $Z = 12 - 3x^2 - 3y^2$

Sol 8

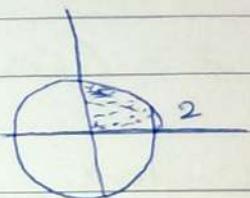
$$\begin{array}{c} y \geq 0 \quad z \geq 0 \quad x \geq 0 \\ \downarrow \quad \downarrow \quad \downarrow \\ y \geq 0 \quad z \geq 0 \quad x \geq 0 \end{array} \rightarrow \text{first octant}$$

Surface $\Rightarrow Z = 12 - 3x^2 - 3y^2$
 $\Rightarrow Z = 0$

1) $x = 0, y = 0 \Rightarrow$ origin

$$12 - 3x^2 - 3y^2 = 0 \Rightarrow x^2 + y^2 = 4$$

$$I = \int_0^{\sqrt{2}} \int_0^{\sqrt{12-3r^2}} \int_0^r (r \cos \theta + r \sin \theta + z) dz r dr d\theta$$



See 15.9 Triple integrals in ~~spherical~~ Spherical coordinates \Rightarrow

Let $A(x, y, z)$ be in rectangular coordinates

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\rho^2 = x^2 + y^2 + z^2$$

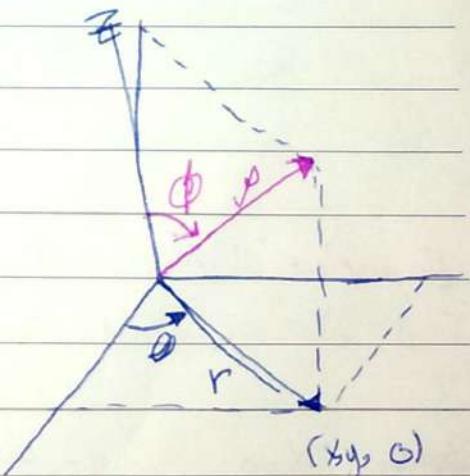
$$x = \rho \sin \theta \cos \phi$$

$$y = \rho \sin \theta \sin \phi$$

$$z = \rho \cos \theta$$

$$0 \leq \theta \leq 2\pi$$

$$0 \leq \phi \leq \pi$$



The spherical coordinates of A are $A(\rho, \theta, \phi)$

~~area~~

$$r = \rho \sin \phi$$

~~area~~

Example 20 Convert the pt. $A(2, \frac{\pi}{4}, \frac{2\pi}{3})$ to rectangular cylindrical ^{and} cylindrical coord. ~~A~~ A is given in spherical coords.

$$\text{Sol. } \rho = 2 \Rightarrow \theta = \frac{\pi}{4} \Rightarrow \phi = \frac{2\pi}{3}$$

$$x = \rho \sin \phi \cos \theta$$

$$= 2 \sin\left(\frac{2\pi}{3}\right) \cos\frac{\pi}{4} = \frac{2\sqrt{3}}{2} \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{\sqrt{2}}$$

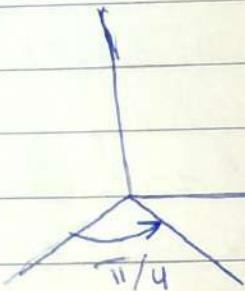
$$y = \rho \sin \phi \sin \theta = \frac{\sqrt{3}}{\sqrt{2}}$$

$$z = \rho \cos \phi = 2 \cos\frac{2\pi}{3} = 2\left(\frac{-1}{2}\right) = -1$$

Rectang. coord. of A are $A\left(\frac{\sqrt{3}}{\sqrt{2}}, \frac{\sqrt{3}}{\sqrt{2}}, -1\right)$

$$r = \rho \sin \phi = 2 \sin\frac{2\pi}{3} = \frac{2\sqrt{3}}{2} = \sqrt{3}$$

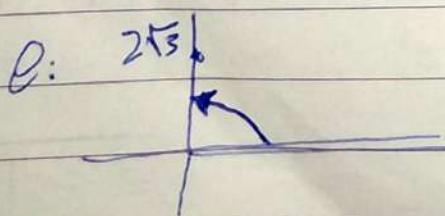
Cylindr. coord. are $A(\sqrt{3} = \frac{\pi}{4}, -1)$



Example 21 The pt. $A(0, 2\sqrt{3}, -2)$ is in rectangular coordinates. Find the spherical coord. of A.

$$\text{Sol. } x=0, y=2\sqrt{3}, z=-2$$

$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{16} = 4$$



$$\theta = \pi/2$$

$$Z = \rho \cos \theta \Rightarrow \cos \theta = \frac{Z}{r} \Rightarrow \cos \theta = \frac{-3}{4} \Rightarrow \cos \theta = -\frac{1}{2}$$

$$\theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

$$\therefore A(4, \pi/2, \frac{2\pi}{3})$$

Example: Convert the surface from spherical to rectangular coordinates
 then sketch it: ① $\theta = \frac{\pi}{4}$ ② $\theta = \frac{3\pi}{4}$ ③ $\rho = 3$

$$\text{Sol } \Rightarrow \text{II} \quad \cos \phi = \cos \frac{\pi}{4}$$

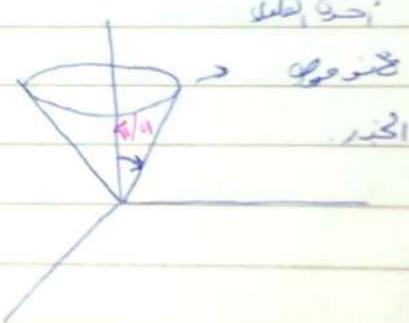
$$\frac{x}{\rho} = \frac{1}{\sqrt{2}} \Rightarrow \frac{x}{\sqrt{2}} = \frac{1}{\sqrt{2}} \sqrt{x^2 + y^2 + z^2}$$

$$E = \frac{1}{\sqrt{2}} \sqrt{x^2 + y^2 + z^2} \text{ regt.} \quad \text{zu a81}$$

$$Z \stackrel{?}{=} \frac{1}{2} (x^2 + y^2 + z^2)$$

$$2z^2 = x^2 + y^2 + z^2$$

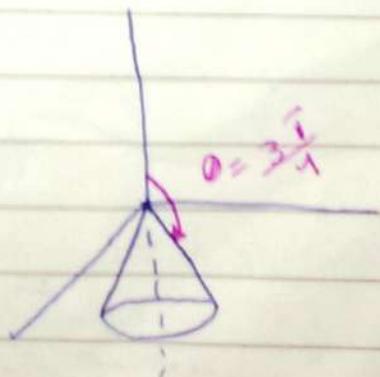
$$z^2 = x^2 + y^2$$



$$(2) \cos \theta = \cos \frac{3\pi}{4}$$

$$\frac{e}{p} = \frac{-1}{\sqrt{2}}$$

$$Z = - \frac{\sqrt{f^2 + g^2 + \varepsilon^2}}{\sqrt{2}}$$



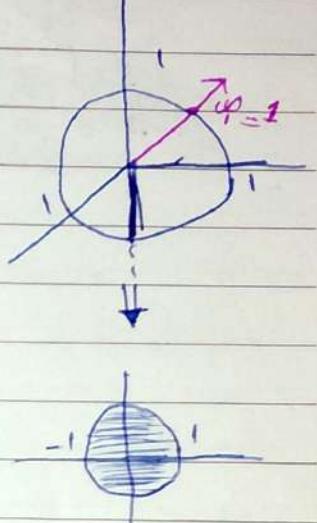
Example & Evaluate $\int \iiint_B e^{(x^2+y^2+z^2)^{3/2}} dv$

where $B : \{(x, y, z) : x^2 + y^2 + z^2 \leq 1\}$?

$$I = \int_0^{\pi} \int_0^{2\pi} \int_0^1 e^{(\rho^2)^{3/2}} \rho^2 \sin \theta \, d\rho \, d\theta \, d\phi$$

$$I = \int_0^{\pi} \int_0^{2\pi} \int_0^1 \rho^2 e^{\rho^3} \sin \theta \, d\rho \, d\theta \, d\phi$$

$$= \left(\int_0^{\pi} \sin \theta \, d\theta \right) \left(\int_0^{2\pi} d\phi \right) \cdot \left(\int_0^1 \rho^2 e^{\rho^3} \, d\rho \right)$$



Example use spherical coord. to find the volume of the solid that

(1) above $z = \sqrt{x^2+y^2}$ and below $x^2+y^2+z^2=2$ inside

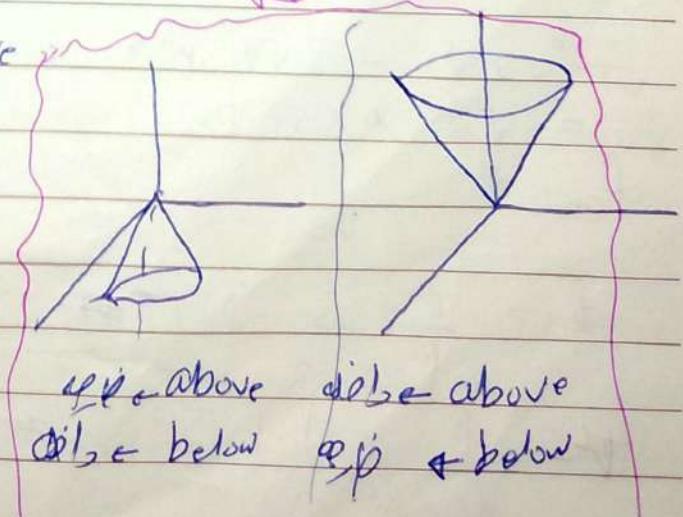
(2) inside $x^2+y^2+z^2=4$ and above the xy -plane & below $z = \sqrt{3x^2+3y^2}$

(3) inside $x^2+y^2+z^2=4$ and above $z = -\sqrt{\frac{x^2+y^2}{3}}$

Sol: (1) $x^2+y^2+z^2-2=0$

$$x^2+y^2+(z-\frac{1}{2})^2 = \frac{1}{4} \text{ Sphere}$$

Remark



up & above down & above
up & below down & below

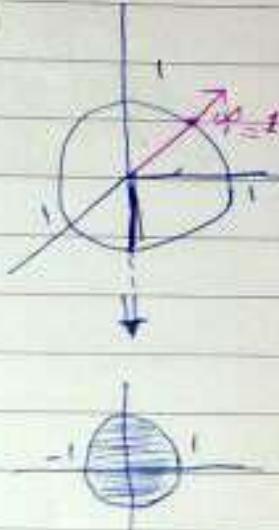
Example 3 Evaluate $I = \iiint_B e^{(x^2+y^2+z^2)^{3/2}} dv$

where $B: \{(x, y, z) : x^2 + y^2 + z^2 \leq 1\}$?

$$I = \int_0^{\pi} \int_0^{2\pi} \int_0^1 e^{(\rho^2)^{3/2}} \rho^2 \sin \theta \, d\rho \, d\theta \, d\phi$$

$$I = \int_0^{\pi} \int_0^{2\pi} \int_0^1 e^{\rho^2} \rho^2 \sin \theta \, d\rho \, d\theta \, d\phi$$

$$= \left(\int_0^{\pi} \sin \theta \, d\theta \right) \left(\int_0^{2\pi} d\phi \right) \cdot \left(\int_0^1 e^{\rho^2} \rho^2 \, d\rho \right)$$



Example - Use spherical coord. to find the volume of the solid part

(i) above $z = \sqrt{x^2+y^2}$ and below $x^2+y^2+z^2=2$

(ii) inside $x^2+y^2+z^2=4$ and above the xy -plane and below $z = \sqrt{3x^2+3y^2}$

(iii) inside $x^2+y^2+z^2=4$ and above $z = -\sqrt{\frac{x^2+y^2}{3}}$

Sol 3. (i) $x^2+y^2+z^2=2$

$$x^2+y^2+(2-\frac{z}{2})^2 = \frac{1}{4}$$

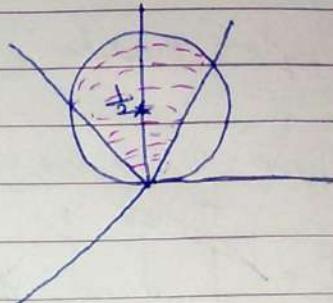
Remark



up & above & above
else & below & below

$$V = \iiint_S 1 \, dV$$

$$= \int_0^{\pi/4} \int_0^{2\pi} \int_0^{\cos\theta} 1 \rho^2 \sin\theta \, d\rho \, d\theta \, d\phi$$



$$x^2 + y^2 + z^2 = z$$

$$\rho^2 = \rho \cos\theta$$

$$\rho = 0 \rightarrow \rho = \cos\theta$$

$$0 \leq \theta \leq 2\pi$$

$$\phi = 0 \rightarrow \phi = \pi/4$$

$$z = \sqrt{x^2 + y^2} \Rightarrow$$

$$\rho \cos\theta = \sqrt{\rho \sin\theta}$$

$$\tan\theta = 1 \Rightarrow \theta = \pi/4$$

$$(2) x^2 + y^2 + z^2 = 4 \text{ sphere}$$

$$\rho = 0 \rightarrow \rho = 2$$

$$0 \leq \theta \leq 2\pi$$

$$z = \sqrt{3} \sqrt{x^2 + y^2}$$

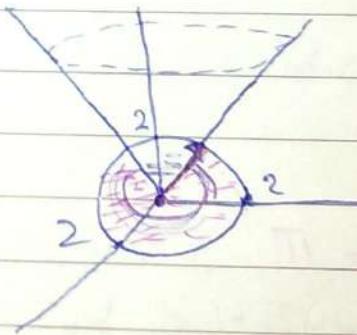
$$\rho \cos\theta = \sqrt{3} r$$

$$= \sqrt{3} \rho \sin\theta$$

$$\tan\theta = \frac{1}{\sqrt{3}}$$

$$\phi = \frac{\pi}{6} \rightarrow \phi = \pi/4$$

$$\pi - \int_{\pi/6}^{\pi/4} \int_0^{2\pi} \int_0^2 1 \cdot \rho^2 \sin\theta \, d\rho \, d\theta \, d\phi$$



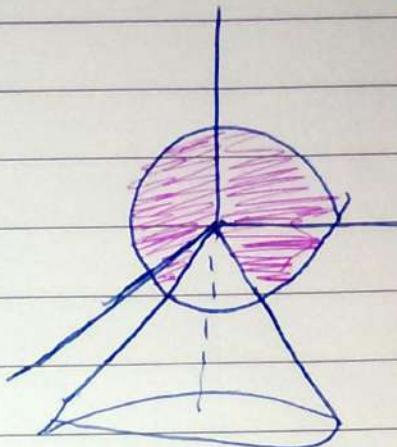
$$(3) \rho = 0 \rightarrow \rho = 2$$

$$0 \leq \theta \leq 2\pi$$

$$\phi = 0 \rightarrow \phi = \frac{2\pi}{3}$$

$$\cos \phi = \frac{-1}{\sqrt{3}} \quad r = \frac{-1}{\sqrt{3}} \rho \sin \phi$$

$$\tan \phi = -\sqrt{3} \Rightarrow \frac{2\pi}{3} = \phi$$



$$\int_0^{\frac{2\pi}{3}} \int_0^{\frac{2\pi}{3}} \int_0^2 1 \cdot \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$$